wireless

OME

Platform Programming

v

Thie essentiol uteeiol for every
JIME platleem develops—

o wireloss expeciente necessory

v
m;mm of n;ulil:g:&
degloyment

v

T Advoned topics inchude: pecsivtent
o Merogs, natworking, diibuted

1 . R

Pl
The JIME plotform: key teiminclogy,

concepts, ond opplicofion
development processes

JAVA SERIES ®Sun

miciosyitems

VARTAN PIROUMIAN

Brought to you by ownSky!

Wireless J2ME™ Platform Programming

By Vartan Piroumian

Publisher : Prentice Hall PTR

Pub Date : March 25, 2002
ISBN : 0-13-044914-8
Pages : 400

In Wireless I2ME Platform Programming, one of the leading wireless application
consultants at Sun has written a step-by-step guide to successful wireless devel opment
with the 2ME platform. Vartan Piroumian illuminates every key feature of the 2ME
platform, and the entire development process: planning, design, architecture, coding,
user interface development, compilation, debugging, execution, provisioning, gateway
integration, internationalization, application provisioning, and more.

http://www.informit.com/safari/author_bio.asp?ISBN=0130449148

Table of Content

TabIE OF CONTENT ...t i
(©£070)Y/ o o | AP SRR v
RESTRICTED RIGHTS LEGENDccoiiiieieseceeeeeeeeee e iv
TRADEMARKSttt sttt sneene e eneas iv
(@3 1= [£SO TRSRPS iv
(D 7=To [or=Vi[o] o PO USSP %
1= Y0 (o TSSOSO %
= = SRR Vi
ACKNOWIEAGMENTS.......ei ettt e s e e eneesneene e Vii
100 (¥ Tox 1 o o FOU P URSTRR viii
Book Content and Organization...........cocceeeeieereneneese e IX
Lo 1= o= SRR X
Conventions Used In ThisS BOOKcccceiiiiiininiieneeeee e Xi
Where to Download J2ME ... s Xi
Where to Find the Code Examples From This BOOK..........cccccveviernennnnne. Xi
Chapter 1. Introduction to the Java 2 Micro Edition (2ME) Platform..................... 1
Defining a Java Platform for Pervasive DeVICES.cccveerercieieenenieenieenn 1
Configurations and Profiles ... e 3
Device Application Management SYStEMS........ccccvveveereeieeseeseeseeseeneeeeens 11
Chapter SUMIMATYcccooiiiie e e e eesreenneeneens 12
Chapter 2. The MIDP Application Development ProCess..........cccoveeeveeresieeseeenenns 13
(DTS o] o TaTo ir=1g o @0 o 1oV SRS 14
(@] 0 o] o] F= {0 o USRS 15
PreVerifiCAtiON ..o e 16
o To3 € T[] o SRS 17
Deployment and EXECULION.........ccvecveeereeie e seerie e e e e sae e s sne e 21
Using the J2ZME Wireless TOOIKIL ..o 21
Chapter SUMMATYcceiiiiieieeee et nae e 31
Chapter 3. MIDP Application Program SIrUCIUrE...........ceoeveenenienieseeee e 32
The Application Execution LIifeCYCle.........ccoveeiiiiiiiniireneeeeeeeeee e 32
MIDlet Program StHUCTUIEccccveieeeeceee et sae e ae e s nae e 36
The MIDIlet State MOAEl ..o s 38
The MIDP Ul Component MOdel.........cccoviieriiiinieeee e 40
SYSEM PrOPEITIES ...t s ae s 44
PN o] o[To= a0 T e f0] o =T 1= 46
Chapter SUMIMATYccvoiiiie et neeeesneenneeneeas 48
Chapter 4. The MIDP High-Level AP ... 49
CoMMANT PrOCESSING ..ecuveiueeiieeieeiesieeieseesteesaesee e seesseesseeaesseesseeneesseesseanenns 49
Command-Processing SCENANOccceveererrieniesee e e 50
SCreen NAVIQATIONcoiieieeeee e 60
Command OrganiZationccceeceereereeieeseere e see e e see e e e seesreesseeneens 61
Chapter SUMIMATYcccooiiiie e e e eesreenneeneens 67
Chapter 5. The MIDP Ul COMPONENES.......ccceieerieeiesiesieeeeseesieseesseesseeessreeneesneens 68
MIDP Ul Component HIEIarChyc.ccoceeeveieeneeie e seese e seese e s e 68
Screens and Screen EIBMENTS ..o 69
SCreen NaVIQATIONcoiiiiieeeee e s be s 80
More ItemM COMPONENTS.......ooociiiiiie et re e ennes 82

Chapter SUMMATYcccoiiieciereee st sreeae e 100

Chapter 6. The MIDP LOW-LeVEl APccooeeeeeee e 102
Command and Event HandliNgccocveeeveeveeie e 103
GraphiCS DIaWING.....ccceceecieeieeieseeriesee e eae e steesae e sse e sesee s e esseeseessaesseeneens 109
Chapter SUMMAIYcooiiiiiiee et 139

Chapter 7. Persistent Storage SUppPOrt in MIDP ..o 140
Device Support for Persistent StOrageccceceveeveeceeseeseceeseese e 140
RMS Data Storage MOAEl ..o 140
T 0] {0 7SS 142
An Example APPHCALIONccccciiiiiieieceseee e 142
Chapter SUMMAIYcooiiiiiieeeeee e 158

Chapter 8. MIDP Networking and CommuNiCations............ccceveereereseeseeseesnens 159
The MIDP Networking Modeloooveeeiieieceeceee e 159
Generic Connection Framework Classes and Interfacesc..c.ccocee.. 162
Differences between J2ME and J2SE Networkingccccocceveenenennennnn. 200
Chapter SUMMATYcccoieeecieceee e sreeae e 201

Chapter 9. INternatioNaliZatiON............cooieeeiieieeiere e e 203
(7o) g [o7=] o K5 J TS PR PRSPPI 203
Internationalization SUPPOrt in MIDPcccveiieieseceee e 206
Designing an 118N Solution for a MIDP Applicationcccccveevereenennnn. 209
Chapter SUMMAIYcciiiiiiieee e 251

Chapter 10. Application ProvViSIONING........cccveeereerienieneeniesie e siesee e siee e saee e 253
(7o) g (077 o K5 J TS URT PRSPPI 253
The ProviSioning PrOCESScccooiiiieiirieseeie e 256
Preparing Applications for Provisioning SyStemsccccceeeevieeresceeseenn. 262
Chapter SUMMATYcccoiiie et sreeaeenee e 264

Chapter 11. The Wireless Internet ENVIironmentcccecveveeveseeneeceeseeneeseenns 265
Background, Terminology, and CONCEPLS.......cceceeverceereerercieseere e 265
The Wireless Application ENVIrONMENt........ccccoiiriinienenieseeneeee e 267
Wireless APPHICALIONS. ..o e 269
ApPlication ArChILECIUIEccvcceiieceee e 272
Chapter SUMMATYcccoiiie e sre e e 280

APPENAIX A. REFEIENCES......cviieeeeieie et 281

L L0152 TSRS 282

Copyright

© 2002 Sun Microsystems, Inc.—

Printed in the United States of America.

901 San Antonio Road, Palo Alto, California
94303 U.SA.

All rights reserved. This product and related documentation are protected by copyright and
distributed under licenses restricting its use, copying, distribution, and decompilation. No part of
this product or related documentation may be reproduced in any form by any means without prior
written authorization of Sun and itslicensors, if any.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the United States Government is subject to the restrictions set
forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The products described may be protected by one or more U.S. patents, foreign patents, or pending
applications.

TRADEMARKS

Sun, Sun Microsystems, the Sun logo, Java, and all Java-based trademarks are trademarks or
registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

The publisher offers discounts on this book when ordered in bulk quantities. For more information,
contact Corporate Sales Department, Prentice Hall PTR , One Lake Street, Upper Saddle River,
NJ 07458. Phone: 800-382-3419; FAX: 201- 236-7141. E-mail: corpsa es@prenhall.com.

Credits

Editorial/production supervision: Carol Wheelan
Cover design director: Jerry Votta

Cover designer: Anthony Gemmellaro

Cover illustration: Karen Strelecki
Manufacturing manager: Alexis R. Heydt-Long
Marketing manager: Debby vanDijk
Acquisitions editor: Gregory G. Doench
Associate editor: Eileen Clark

Editoria assistant: Brandt Kenna

mailto:corpsales@prenhall.com

Sun Microsystems Press Publisher: Michael Liwyd Alread
10987654321
Sun Microsystems Press

A PrenticeHall Title

Dedication
To Maans, Mom, Weesa, and Feem

To my parents, for the vastness, intensity, and quality of their love; for their unending commitment
and responsihility as parents; for their sacrifice and dedication to providing the best possible
environment, education, and life for their children; and for their guidance and the lessons and
memories that last a lifetime.

And to my brother and sister, my utmost respect for their values, intelligence, love, support, faith,
and loyalty.

Without them, nothing else really seems meaningful in thislife.

Foreword

When we announced Java 2 Micro Edition (J2ME) afew years ago, we believed that Java had an
important role to play in handheld devices. Some were skeptical that Javawould be small enough
for such limited devices.

But no longer. Java for the small device is a success. J2ME has emerged strongly in the wireless
market. Java's portability and extensibility have brought about rapid adoption in this market. Tens
of millions of Java-enabled phones have already been sold, with adoption accelerating and much
growth to come.

The success of Java beyond desktop computers is significant to developers. Java literacy is now
more important than ever, as Javais used more and more to program a whole range of new
computing devices—not only wireless handsets but also personal digital assistants, set-top boxes,
cameras, automobiles, home control, and more types of devices not yet dreamed of. 2ME will be
in many if not most of these devices; an understanding of J2ME and devel opment of 2ME
applications will increase the proficiency and effectiveness of any software devel oper.

This book is an excellent introduction to 2ME. Its tutorial structure promotes rapid learning and
hands-on experience. It's especially interesting to see how the small device constraints on input,
display, memory, and CPU dl require skills different from those needed for the desktop
environment. Common practices from the minicomputer and earlier eras are applicable once again.

We hope you enjoy this book and enjoy J2ME. Have fun!
Bill Joy, Mike Clary

Sun Microsystems, Inc.
San Francisco, January 2002

Preface

Undoubtedly, you aready know that the Java 2 Micro Edition (J2ME) platform defines an
environment that supports Java on so-called pervasive devices such as TV set-top boxes and on
personal mobile devices such as PDAs, mobile phones, and pagers. This book teaches you how to
design and develop Java applications for the J2ME platform.

Several motivations precipitated the creation of this book. First, | felt the need for a good book
that cultivates a solid technical foundation for professional J2ME programmers by building upon
concepts and idioms. | believe that such a book would be particularly useful in light of the
explosive growth of the wireless computing paradigm. Wireless environments offer their own
challenges to application devel opers because of their user interfaces, resource constraints,
underlying wireless network characteristics, and the interface between the wireless and fixed
network infrastructures. Concepts help organize this complexity. Moreover, concepts apply to all
platforms.

I'm afirm believer that the best learning occurs when one first acquires a conceptual foundation
and then complements it with practical application of concepts through pertinent techniques. In
software, a platform's concepts and abstractions form the foundation needed to enable the

devel oper to employ techniques and utilize toolkit idioms. This set of pragmatics comprises the
core tools in the software engineer's arsenal. The engineer is then able to use atoolkit the way its
designersintended it to be used. This discipline leads to better code.

With aview toward inculcating such discipline, this book istutorial in nature and takes a
somewhat pedagogical approach to the introduction of J2ME. Topics are presented in alogical
progression, in the order in which one needs to understand concepts to design real applications
from scratch. Each chapter builds upon those that precede it. Examples reflect the concepts and
application of programming idioms.

This practical approach helps you understand what you need to do and why you need to do it.
Armed with the knowledge of how things work, you can successfully design and build complex
professional J2ME applications in the absence of suitable examples from reference manuals.
Although reference manuals are valuable for demonstrating the mechanical manipulation of APIs
on asmall scale, they have greater difficulty demonstrating the foundation of concepts that are
central to the design and organization of large-scale applications. Nor can they anticipate the
design challenges you'll encounter in an arbitrarily complex, real-world application. The two
approaches—reference and tutorial—are complementary, but | believe that conceptual learning is
thefirst step.

The popularity and presence of wireless communications has been increasing steadily over the
past few years. Worldwide omnipresence of third-generation systems that include Javais
imminent. Personal devices that host practical applications will become available to the masses.
Javain general, and 2ME in particular, have been influential in advancing the availability of a
standard platform that supports the construction and deployment of nontrivial applications on
personal mobile devices.

As technology advances in often unpredictable ways, the nature of future systems is uncertain at
best. Platforms might merge, diverge, or become obsolete as new breakthroughs usher laboratory
technology into the engineering mainstream. One thing is certain, though: The concepts
underlying the engineering are more constant than the engineering details themselves.

Momentum is always influential in the world of technology. Because Java and J2ME define a
worthwhile computing model, the longevity of J2ME is assured despite the constantly evolving

Vi

technology in the industry. A solid foundation will enable you to navigate the changing landscape
successfully.

I hope you enjoy this book and your entry into a computing arenathat is as much just plain fun as
itisdynamic. And | hope you will find this book useful as you begin your journey through the
world of mobile computing.

Vartan Piroumian
Palo Alto, California
January 2002

Acknowledgments

As aways, many people other than the author participate in the creation and success of a book
from genesis through distribution to the bookshelves. First and foremost, | would like to thank
Rachel Borden of Sun Microsystems, to whom | first spoke about this project and who was
instrumental in selling it to Prentice Hall. | would also like to thank Michagl Alread of Sun for his
efforts as continuing liaison with Prentice Hall.

It was a pleasure to work with all of the Prentice Hall staff—Eileen Clark, Gail Cocker, Greg
Doench, and Debby vanDijk. Not only did they conduct themselves professionally but they also
maintained open and productive lines of communication, coordination, and support throughout the
project. | am looking forward to continuing to work with them in the future. | also would like to
thank Sybil 1hrig of Helios Productions for her excellent work in the copyediting, page
composition, and production stages. | always marvel at how good copyeditors can make authors
seem eloguent.

Special thanks go to my colleagues from the Sun Santa Clara Java Center. Manisha Umbarje
helped unearth localization resources for chapter 9. Marina Fisher helped by providing the Russian
tranglations. Thanks to Rita Abrahamian and also to my mother, Edith Piroumian, for their help
with the Armenian translations and for not scolding me for not being able to do it myself. | also
would like to thank Brendan McCarthy, chief methodologist of the Sun Java Centers worldwide,
for hisinput on chapter 11. Brendan is the principal author of Sun Microsystems' SunTone
Architectural Methodology, and his input was invaluable in helping me explain a difficult topic
clearly.

| al'so would like to give wholehearted thanks to Ms. Emiko Koyama for her timely Japanese
tranglations. As usual, Koyama-san responded willingly and cheerfully to produce accurate
tranglations in the ridiculously short time in which she had to work. My thanks also go out to Ms.
Junko Sunamurafor her quick response in providing some additional Japanese translations.

| also would like to express my sincere appreciation to some friends for graciously helping with
the Chinese trandlations and allowing me to interrupt their family reunion during the Christmas
and New Y ear seasons. Special thanks go out to Ms. Renee Tan for her guidance on how to
efficiently navigate through more than forty thousand Chinese ideographs and eighty thousand
unified Han ideographs and syllabaries, and for teaching me the finer points of radical indexing
and six different ideographic organizational schemes. Likewise, specia thanks go out to Mr.
Sheng Song Tan for his help with Chinese and Japanese trandlations, and to Ms. Frances Han for
her help with the simplified Chinese translations and pinyin indexing.

Mike Moumouitjis of CrispWirelessin New Y ork City gets specia mention, not only for his
standing offer to treat me to a sumptuous Greek dinner in New Y ork, but also for introducing me
to Pat Pyette, who took on the role of technical reviewer for this book. Pat is an accomplished

Vii

J2ME developer and one of the two original founders of KV MWorld.com. Pat graciously took on
this book project amidst his desperately busy schedule that includes running his consulting
company, periMind Corporation (one of the founding companies of the Micro Java Network) as
well aswriting for the Micro Java Network. | thank Pat for his professionalism, sharp eye,
meticul ous attention to detail, and encouraging comments. Pat took the time to carefully examine
each line of text and source code. His comments in every chapter have been invaluable in helping
me improve the quality and usefulness of this book.

Gary Adams of Sun was kind enough to patiently answer all my questions about the subtleties of
working in constrained resource environments. Of course, | can't forget John Rizzo of the

V odafone Global Platform Group in Californiafor hisinsight and useful feedback on chapter 10.
Not only have | enjoyed working with John professionally for the past year—I've also enjoyed his
inimitable style.

| would like to sincerely thank my manager, Alex Wong of the Sun Santa Clara Java Center, for
not only supporting me during this project but also for continuing to encourage me to pursue the
project. Likewise, | would like to thank Jeffrey Johnson, manager of the Western Region Java
Centers at Sun, and Stu Stern, Worldwide manager for the Sun Java Centers, for their support, and
for their belief in the value of this book for our practice and for Sun.

Finally, | would like to thank Mike Clary of the Java Software division of Sun Microsystems and
Bill Joy of Sun Microsystems for writing the foreword to this book. These gentlemen were the
originators of the concept of the 2ME platform. | thank them for their support and for their
willingness to be a part of this book project.

Introduction

This book teaches you how to devel op software for the Sun Microsystems J2ME platform. It
follows a tutorial-style approach; it's not a reference manual. The aim isto give you a solid
foundation in concepts and techniques that will enable you to venture off and develop quality
applications independently.

Consistent with this approach, this book doesn't provide endless pages of APl documentation; |
leave that offering to the Sun Microsystems Java Software Web site, which maintains the latest
and most accurate APl documentation. The reader might find it useful, therefore, to have accessto
the official Java Software 2ME API documentation while reading this book, which can be found
at http://java.sun.com/[2me/docs. Y ou can either download the full APl documentation or read it
online. Additionally, Prentice Hall publishes as part of its Java series a J2ME reference manual
that complements this book.

Also absent by design from this book are specific details of J2M E development tools offered by
third-party vendors. In concert with the book's tutorial approach, | only introduce you to the Sun
Microsystems J2ME Wireless Toolkit, which is the reference development toolkit for 2ME. It's
available free of charge from Sun Microsystems at the Java Developer Connection Web site,
which you must access by logging in. Follow the developer connection link from
http://java.sun.conV. In this way, you can become familiar with a J2ME development environment
and emulator and build and test real applications.

Device manufacturers often provide development tools of their own that are similar to Sun's 2ME
Wireless Toolkit. Additionally, other third party software companies offer 2ME devel opment
tools. This book doesn't discuss those tools because they don't add anything to the concepts or
pragmatics of how to design and develop J2ME applications.

viii

http://www.kvmworld.com/
http://java.sun.com/j2me/docs
http://java.sun.com/

This book also defines and discusses wirel ess application provisioning systems and covers
application deployment and provisioning from a conceptual perspective, without becoming mired
in the details of specific vendor offerings of provisioning server software. The notion of
application deployment is more visible—and more critical—with J2ME than with other platforms
such as J2SE. In fact, understanding deployment issuesis acrucial element of the 2ZME
application devel opment process.

Finally, | expose the reader to ideas surrounding application architecture. As we rely more heavily
on computing devices that are continually becoming more pervasive, it becomes increasingly
important for developers to think about reliability, performance, scalahility, security,
manageability, and so forth. This book gives you an introduction to these concepts and to the
notion that developers must think about these characteristics from the outset.

Although this book introduces elements comprising the breadth of the 2ME platform, it focuses
on the CLDC and MIDP, which support personal, mobile, and independent devices—those with
intermittent network connectivity, such as mobile phones. Programming examples and API
discussions address this subset of the J2ME platform. The reason for this choice isthat, asa J2ME
developer, you will most likely be called upon to develop applications for this class of devices.

Book Content and Organization
The book is organized as follows:

Chapter 1: Introduction to the Java 2 Micro Edition (J2ME) Platform
Chapter 2: The MIDP Application Development Process
Chapter 3: MIDP Application Program Structure
Chapter 4: The MIDP High-Level API

Chapter 5: The MIDP Ul Components

Chapter 6: The MIDP Low-Level API

Chapter 7: Persistent Storage Support in MIDP

Chapter 8: MIDP Networking and Communications
Chapter 9: Internationalization

Chapter 10: Application Provisioning

Chapter 11: The Wireless Internet Environment

Chapter 1 introduces you to the 22ME computing platform. It defines much of the 2ME
terminology and gives you a general orientation to the concepts that surround the design and
organization of the 2ME platform.

Chapter 2 describes the 2ME application development process. Y ou learn how to create, compile,
prepare, execute, and debug J2ME applications. This chapter doesn't cover the toolkit or APIs.
Coverage of those items beginsin Chapter 3.

Chapter 3 describes the 2ME MIDP platform from the software devel oper's point of view. Here
you learn the organization of the APIs and the basic programming abstractions and models defined
by the MIDP platform.

Chapter 4 continues where Chapter 3 |eft off. It coversthe MIDP high-level API, which
encompasses the bulk of the Ul components defined by the MIDP. Y ou learn how to manipulate
the various Ul components and also how to do event handling, called command processing in
MIDP terminology.

Chapter 5 coversthe MIDP user interface (Ul) components. After learning the basic abstractions
defined by the MIDP in Chapter 4, you're ready to learn how to use the components that are built
upon those abstractions.

Chapter 6 coversthe MIDP low-level API, which isimplemented by the balance of the MIDP Ul
components not covered in Chapter 5.

Chapter 7 covers the persistent storage mechanisms available to you using the MIDP.

Chapter 8 is dedicated to networking and communications. Here you learn how to use the
networking and distributed processing services and functionality defined by the CLDC and MIDP.
Y ou will also acquire some insight on the decisions for design and support of connectivity
servicesin 2ME.

Chapter 9 gives you an introduction to internationalization. Thisis atopic of considerable breadth
and depth that requires more than even a single, dedicated volume. Here, you'll learn about some
of theissuesthat you'll encounter while building real-world MIDP applications. This chapter
covers the extent of the internationalization support in the CLDC and MIDP and shows some
examples of how to employ their features. Y ou'll aso learn how to configure your device
environment to support internationalization and localization.

Chapter 10 covers application management and provisioning systems. Conceptual familiarity with
these systemsisimportant to the J2ME application devel oper, particularly MIDP devel opers,
because these systems affect your interaction with application and content providers, wireless
network carriers, and even end users.

Chapter 11 discusses the wireless I nternet environment. It discusses the integration between
wireless and fixed networks, the wireless Internet from the application developer's perspective,
and the context in which applications execute. Y ou'll get an introduction to wireless Internet
gateways, Internet portal interfaces, and wireless application interfaces and services—all things
that you're likely to encounter as a wireless application developer. This chapter also introduces
basic architectural concepts and how they influence the J2ME application devel oper.

Audience

This book isintended for Java developers. It's suitable for professional software developers and
advanced students alike. More precisely, this book expects the reader to be fluent with the Java
programming language but doesn't assume programming experience with particular APIs beyond
the core Java APIs. Notwithstanding alack of experiencein any particular area of Java
programming beyond fluency with the language, it's helpful if readers have at least an
understanding of the concepts and vernacular that surrounds various Java technologies, such as
those terms related to virtual machines, garbage collection, class loading, class verification, native
code interfaces, just-in-time compilation, AWT, RMI, JDK, JRE, and so forth.

| also assume, however, that the reader has a decent background in object-oriented programming.
For this reason, | don't explain object-oriented concepts when they arise during the process of
discussing the 2ME APIs, classes, programming idioms, and so forth.

Of course, the more experience the reader has, the better. Throughout the book, various references
are made to AWT and Swing. A significant part of MIDP programming involves manipulating
user-interface components. The reader with knowledge of AWT or Swing toolkit abstractions can
quickly glean useful insights into the organization and abstractions of the MIDP's Ul

programming model. Notwithstanding the benefits of AWT and Swing experience, you don't need
to have any previous background in Java Ul development.

Conventions Used In This Book

Table .1 shows the typographical conventions used throughout this book. Table 1.2 lists the
conventions used for all source code included in this book.

Table I.1. Typographical Conventions

Description of Data Typography Used
Java source code, computer-generated text Fixed width Courier font
First use of a new term Palatino italic font
Regular prose Palatino regular font
Table 1.2. Source Code Conventions Used Throughout This Book
\Type of Data |Examp|e Print
Java method names, variable names: initial protected int variableName
lowercase first word, initial capital letter for public void
subsequent words lookAtThisMethodName ()

Java class names: initial capital letter for all words public class
Al IWordsFirstCapital

Where to Download J2ME

Y ou can download the 2ME Wireless Toolkit and full APl documentation by following the links
to the Java Devel oper Connection from http://java.sun.conV. There, you'll find full API
documentation for CDC, the Foundation Profile and the CLDC/MIDP, as well as the toolkit for all
platforms such as Solaris, Linux, Windows NT, and Windows 2000.

Where to Find the Code Examples From This Book

All the code examples that you encounter in this book can be found on the Prentice Hall Web site
at http://www.phptr.com/piroumian

Xi

http://java.sun.com/
http://www.phptr.com/piroumian

Chapter 1. Introduction to the Java 2 Micro Edition
(J2ME) Platform

e Defining aJavaPlatform for Pervasive Devices
e Configurations and Profiles
e Device Application Management Systems

Sun Microsystems has defined three Java platforms, each of which addresses the needs of
different computing environments:

e Java?2 Standard Edition (J2SE)
Java 2 Enterprise Edition (J2EE)
e Java?2 Micro Edition (J2ME)

The inception of the J2ME platform arose from the need to define a computing platform that could
accommodate consumer electronics and embedded devices. These devices are sometimes referred
to collectively as pervasive devices.

The creators of the J2ME platform delineated pervasive devices into two distinct categories:

e Personal, mobile information devicesthat are capable of intermittent networked
communi cations—mobile phones, two-way pagers, persona digital assistants (PDAS),
and organizers

e Shared-connection information devices connected by fixed, uninterrupted network
connection—set-top boxes, Internet TV's, Internet-enabled screen phones, high-end
communicators, and car entertainment/navigation systems

The first category describes devices that have a specia purpose or are limited in function; they are
not general-purpose computing machines. The second category describes devices that generally
have greater capability for user interface (Ul) facilities. Of course, devices with superior Ul
facilities typically have more computing power. Practically speaking, computing power is the
primary attribute that distinguishes these two categories of devices. Nevertheless, this delineation
is somewhat fuzzy, because technology continues to enable more and more power to be placed in
smaller and smaller devices.

Like computing power, connectivity—the availability of media such as wireless networks—also
affects the kinds of functionality and services that pervasive devices can support. The challenge—
and the primary goal—for J2ME is to specify a platform that can support a reasonable set of
services for a broad spectrum of devices that have awide range of different capabilities.

The creators of J2ME identify modular design as the key mechanism that enables support for
multiple types of devices. The J2ME designers use configurations and profiles to make J2ME
modular.

Defining a Java Platform for Pervasive Devices

Configurations and profiles are the main elements that comprise J2ME's modular design. These
two elements enable support for the plethora of devices that 2ME supports.

A J2ME configuration defines a minimum Java platform for afamily of devices. Members of a
given family all have similar requirements for memory and processing power. A configuration is
really a specification that identifies the system-level facilities available, such as a set of Java
language features, the characteristics and features of the virtual machine present, and the
minimum Java libraries that are supported. Software devel opers can expect a certain level of
system support to be available for afamily of devices that uses a particular configuration.

A configuration also specifies aminimum set of features for a category of devices. Device
manufacturers implement profilesto provide areal platform for afamily of devices that have the
capabilities that a given configuration specifies.

The other 2ME building block, the profile, specifies the application-level interface for a
particular class of devices. A profile implementation consists of a set of Java class libraries that
provide this application-level interface. Thus, a profile theoretically could specify al kinds of
functionality and services.

Thisis not the intention of its creators, however. The creators of J2ME intend that a profile should
address the needs of a specific device category or vertical market pertaining to that device
category. Theideais not to place a plethora of unrelated application-level featuresin a profile.
Rather, the main goal is to guarantee interoperability—which doesn't necessarily imply
compatibility between different manufacturers implementations—between all devices of the same
category or vertical market family to define a standard platform for Java application development.

For example, a profile might support a network communication facility for the popular Short
Message Service (SMS) standard widely used by mobile phones. Because the SM S standard is a
ubiquitous feature of mobile telephony, it makes sense to define this service in a profile that
targets mobile phones, rather than to build it into a configuration.

A profileisimplemented on top of a configuration, one step closer to the implementation of real-
world applications. Typically, aprofile includes libraries that are more specific to the
characteristics of the category of devices they represent than are the libraries that comprise
configurations. Applications are then built on top of the configuration and profile; they can use
only the classlibraries provided by these two lower-level specifications. Profiles can be built on
top of one another. A 22ME platform implementation, however, can contain only one
configuration. Figure 1.1 shows the conceptual layers that comprise the 2ME platform.

Figure 1.1. The J2ME platform consists of a set of layers that support a basic
runtime environment with core Java libraries and a Virtual Machine (VM), a set of
system-level application programming interfaces (APIs) in a configuration, and a

set of application-level APIs in a profile.

Java application

|
Profile

Libraries

Configuration:
JVM

Host operating system

Device hardware

So far, these notions of configurations, profiles, and platform definitions are somewhat abstract.
The next section gives you a more concrete description of the characteristics of actual
environments.

Configurations and Profiles
A configuration specifies three basic elements:

e aset of Java programming language features
e aset of Javavirtual machine features
e aset of supported Java libraries and application programming interfaces (APIs)

The creators of J2ME have defined only two configurations to avoid a fragmented landscape of
incompatible platforms. The two configurations that exist currently represent the two categories of
pervasive devices you saw earlier in this chapter, namely:

e personal, intermittently connected mobile devices— supported by the Connected,
Limited Device Configuration (CLDC)

e constantly connected network devices— supported by the Connected Device
Configuration (CDC)

Theoretically, a configuration could specify the very same support as the J2SE platform libraries.
Thisisunlikely in the real world because, as you now know, J2ME is targeted at devices that are
far less powerful than desktop computers.

Configuration specifications require that all Java classes adapted from J2SE be the same asor a
proper subset of the original J2SE class. That is, a class cannot add methods not found in the J2SE
version. Configurations can include additional classes in their specifications; however,
configurations themselves are not necessarily proper subsets of J2SE. Both configurations that
have been defined to date add classes not present in J2SE in order to address device attributes and
constraints.

The Connected Device Configuration (CDC)

The Connected Device Configuration (CDC) intends to capture just the essential capabilities of
each kind of device in the category of devicesit targets, namely, devices with 2 MB or more of
total memory, including both RAM and ROM.

Asyou saw in Figure 1.1, a configuration specifies both the set of JavaVM features that are
supported and a set of classlibraries. The CDC specifies the use of the full Java 2 platform VM,
which, in this context, is called the Compact Virtual Machine (CVM).

The CVM. Although the CVM supports the same features as the J2SE VM, it is designed for
consumer and embedded devices. This means that the standard J2SE VM has been reengineered to
suit the constraints of limited-resource devices. The features of the resulting offspring CVM are;

advanced memory system

small average garbage collection pause times
full separation of VM from memory system
modularized garbage collectors

generational garbage collection

In particular, the CVM has been engineered to offer the following features:

portability

fast synchronization

execution of Java classes out of read-only memory (ROM)

native thread support

small class footprint

provision of interfaces to and support for real-time operating system (RTOS) services
mapping Java threads directly to native threads

support for al Java 2, v1.3 VM features and libraries: security, weak references, Java
Native Interface (JNI), Remote Method Invocation (RMI), Java Virtual Machine
Debugging Interface (JVMDI)

CDC ClassLibraries. The CDC specifiesaminimal set of classlibraries and APIs. It supports
the following standard Java packages:

java.lang— Java VM system classes

Jjava.util— underlying Java utilities

Jjava.net— Universa Datagram Protocol (UDP) datagram and input/output (1/0)
Java.io— Javafilel/O

Java.text— very minimal support for internationalization (I18N—see chapter 9)
Java.security— minimal fine-grain security and encryption for object serialization

Asyou can see, these APIs do not include the full set of Java 2 software development kit (SDK)
packages. In some cases, these packages and classes are subsets of the Java 2 SDK packages and
classes. Resource constraints dictate removal of the remainder of the J2SE classes and APIs. Also,
all deprecated J2SE APIs are removed. Table 1.1 lists the full set of packages supported by the
CDC.

Table 1.1. CDC Packages

/CDC Package Name IDescription
ljava.io 'Standard 1/O classes and interfaces
ljava.lang \VM classes

liava.lang.ref Reference classes

java.lang.reflect Reflection classes and interfaces
java.math Math package

java.net Networking classes and interfaces
java.security Security classes and interfaces
Ljava- security.cert |Security certificate classes
liava.text Text package

java.util Standard utility classes
java.util_jar Java Archive (JAR) utility classes
java.util.zip ZIP utility classes

ljavax.microedition.io |CDC generic connection framework classes and interfaces

The Foundation Profile. A configuration, together with a profile, creates a 2ME runtime
environment. The system-level features and services supported by a configuration are more or less
hidden from the application devel oper. In redlity, the application developer is prohibited from
accessing them directly. If this were not the case, the application would not be considered 2ME
compliant.

From the programmer's perspective, a profile isrequired to do "useful” work. A profile defines the
layer that contains the APIs that the programmer usually manipulates. The 2ME creators initially
defined one CDC profile, the Foundation Profile, which is based on the J2SE v1.3 release. It was
designed by standard committee through the Java Community Process, by an expert group of
companies in the consumer electronics industry. The Foundation Profile contains the J2SE
packageslisted in Table 1.2.

Thelist of packages above looks exactly like the list that comprises the CDC. In fact, they are the
same. To say that the Foundation Profile contains these packages really means that they are
available to the Foundation Profile. The intention is that the Foundation Profile be used with the
CDC. The ddlineation between the profile and the configuration is a conceptual one, not a physical
one.

Notice that the whole java.awt Abstract Window Toolkit (AWT) and javax.swing Swing
package hierarchies that define the J2SE graphical user interface (GUI) APIs are absent from the
supported packages. If an application needs a GUI, an additional profile would be required.
Profiles can be built on top of one another. An implementation of the 2ME platform, however,
can contain only one configuration.

The lack of GUI support in the Foundation Profile has less impact for the family of shared,
constantly connected network devices such as TV set-top boxes than it does for personal, mobile
devices, which are served by the second J2ME configuration, the CLDC.

In general, the decision to include or omit features and libraries from a configuration or profileis
based on their footprints, static and dynamic resource requirements, and security requirements.

Table 1.2. Foundation Profile Packages

Foundation Profile

Package Name Description

Java.lang Rounds out full java. lang.* J2SE package support for the
Java language (Compiler, UnknownError)

java.util Adds full zip support and other J2SE utilities
(Java.util.Timer)

Jjava.net Adds TCP/IP Socket and HTTP connections

Java.io Rounds out full java.io.* J2SE package support for Java
language input/output (Reader and Writer classes)

Java.text Rounds out full java.text.* J2SE package support for
internationalization (I118N): Annotation, Collator,
Iterator

java.security Adds code signing and certificates

Personal Profile. The Personal Profile specification was created through the Java Community
Process, resulting in JSR-62. The Personal Profile provides an environment with full AWT
support. The intention of its creatorsisto provide a platform suitable for Web applets. It also
provides a 2ME migration path for Personal Java applications.

Personal Profile version 1.0 requires an implementation of the Foundation Profile version 1.0. It is
asuperset of the Personal Basis Profile version 1.0. Personal Profile is a subset of the J2SE
version 1.3.1 platform, however, which makes Personal Profile applications upward compatible
with J2SE version 1.3.1.

Table 1.3 lists the packages that comprise Personal Profile version 1.0.

Table 1.3. Personal Profile Packages

Personal Profile Package Description

Name

java.applet Classes needed to create applets and those used by
applets

java.awt Classes for creating AWT Ul programs

Jjava.awt.datatransfer Classes and interfaces for transferring data within and
between applications

Jjava.awt.event Classes and interfaces for AWT event handling

java.awt.font Classes and interface for font manipulation

Jjava.awt.im Classes and interfaces for defining input method editors

Java.awt. im.spi Interfaces that aid in the development of input method
editors for any Java runtime environment

Uava-awt- image |Classes for creating and modifying images

Ljava- beans |Classes that support JavaBean development

Javax.microedition.xlet |Interfaces used by J2ME Personal Profile applications
and application managers for communication

RMI Profile. The RMI Profileis aprofile designed for platforms that support the CDC
configuration. It has been defined by JSR-66 by various companies participating through the Java
Community Process.

The RMI Profile requires an implementation of the Foundation Profile and is built on top of it.
RMI Profile implementations must support the following features:

full RMI call semantics

marshaled object support

RMI wire protocol

export of remote objects through the UnicastRemoteObject API

distributed garbage collection and garbage collector interfaces for both client and server
side

the activator interface and the client side activation protocol

e RMI registry interfaces and export of aregistry remote object

The RMI profile supports a subset of the J2SE v1.3 RMI API. The following interfaces and
features are part of the J2SE v1.3 RMI specification and public API, but support for these
interfaces and functionality is omitted from the RMI profile specification because of limitations on
device processing power, network performance, and throughput:

RMI through firewalls and proxies

RMI multiplexing protocol

implementation model for an "activatable" remote object
deprecated methods, classes, and interfaces

support for the RMI v1.1 skeleton/stub protocol

stub and skeleton compiler

Support for the following J2SE RMI v1.3 properties is omitted:

e Java.rmi.server.disableHttp

e java.rmi.activation.port

e jJava.rmi.loader.packagePrefix

e jJava.rmi.registry.packagePrefix
e Java.rmi.server._packagePrefix

Connected, Limited Device Configuration (CLDC)

The second of the two J2ME configurations, the Connected, Limited Device Configuration
(CLDC), supports personal, mobile devices, which constitute a significantly less powerful class of
devices than the one that the CDC supports. The CLDC specification identifies devices in this
category as having the following characteristics:

e 160 to 512 KB total memory available for the Java platform

e 16-bit or 32-bit processor

e |ow power consumption, often battery powered

e intermittent network connectivity (often wireless) with potentially limited bandwidth

The goal of the CLDC isto define a standard Java platform for these devices. Because of the wide
variety of system software on various personal devices, the CLDC makes minimum assumptions
about the environment in which it exists. For example, one OS might support multiple concurrent
processes, another might or might not support afile system, and so forth.

The CLDC isdifferent from, yet also a subset of the CDC. The two configurations are
independent of each other, however, so they should not be used together to define a platform.
Figure 1.2 shows the relationship between the two configurations and the J2SE platform.

Figure 1.2. The CLDC is a proper subset of the CDC. Neither the CLDC nor the CDC
is a proper subset of the J2SE platform, however, because both of these
configurations add new classes necessary to deliver services on their respective
families of devices.

Cannot use the
java.” namespace

N —

— —

Like the CDC, the CLDC specifies the level of support of the Java programming language
required, the required functional support of acompliant JavaVVM, and the set of classlibraries
required.

Java L anguage Support. The CLDC specification omits support for the following features of the
Javalanguage:

e floating point calculations
e oObject finalization
e the java.lang.Error classhierarchy inits entirety

Of course, these features involve the VM as well and are discussed in chapter 5 of the CLDC
specification ("Adherence to Java Virtual Machine Specification"). | address them here, however,
because they have alanguage-level presence that affects programmers.

The lack of floating point support is the main language-level difference between a Java virtua
machine that supports CLDC and a standard J2SE VM that is visible to programmers. This means
that programs intended to run on the CLDC cannot use floating point literals, types, or values.

Y ou can't use the float built-in type, and the java. lang . Float class has been removed from
CLDC libraries. Thisfeature is not present because of the lack of floating-point hardware or
software on most mobile devices.

Object finalization is aso absent. This means that the Object. final ize() method has been
removed from the CLDC libraries.

The java.lang.Error exception hierarchy has aso been removed from the CLDC libraries
and is therefore not available to applications. The primary reason that error handling is absent is
memory constraints on mobile devices. Thistypically doesn't create any disadvantages for
applications development; after all, applications are not supposed to recover from error conditions.
And the resource cost of implementing error handling is expensive, beyond the capabilities of
today's mobile devices. Moreover, error recovery is device-specific on embedded devices like
mobile phones. In consequence, it doesn't make sense to stipulate the recovery mechanism that
devices should use. This mechanism may well be outside the scope of an embedded VM.

Java Virtual Machineand Library Support. The CLDC specifies requirements for a Java
virtual machine. It definesaVVM that is highly portable and designed for resource-constrained
small devices. Support for several features that exist in a standard J2SE VM have been omitted
from the CLDC specification. The following list describes the features that are not supported in a
CLDC-compliant VM. The features in thislist have been omitted because of either changes to
libraries or security concerns:

Java Native Interface (INI)

user-defined class loaders

reflection

thread groups and thread daemons

finalization (no Object. finalize() method in CLDC libraries)
weak references

errors (asmall subset of J2SE errorsis supported)

classfile verification

Among these unsupported features, class file verification deserves further mention. The VM in the
CLDC specification still performs this process, but it uses a two-step process and a different
algorithm that requires fewer computation resources than the standard J2SE verifier. In addition,
thereis a new preverification tool, which you will learn about in chapter 2.

The VM that comes with the CLDC reference implementation is called the Kilobyte Virtual
Machine (KVM), so named because it uses only afew KB of runtime memory. It is areference
implementation that adheres to the CLDC specification's description of acompliant VM. The
KVM isnot afull-featured J2SE VM.

The specification of the features that a VM supports includes a specification of the libraries that it
supports. The CLDC specification details the libraries that an implementation must support.

Asyou know, a configuration isthe basis for one or more profiles. The CLDC is a configuration
on top of which one or more profiles are to be built in the same way that the Foundation Profileis
built on top of the CDC. The intention isthat the APIsin the CLDC profile support application
development for the mass market of personal devices. The CLDC therefore targets third-party
application developers. Thisis somewhat different than the CDC, which targets OEM developers.

Table 1.4 lists the packages that comprise the CLDC. Noticethat it is quite a bit smaller than the
list of packages contained in the CDC, shown earlier in Table 1.1.

The first three packages use the java. prefix in their name because each one contains a subset of
the standard J2SE platform classes. The last one, however, must use the javax. prefix because it
defines a new "standard extension” that is not part of the core Java platform.

Table 1.4. CLDC Packages

CLDC Package Name Description

java.io Standard Java 10O classes and packages; subset of the J2SE
package

java.lang VM classes and interfaces; subset of the J2SE package

java.util Standard utility classes and interfaces; subset of the J2SE
package

Javax.microedition.io/CLDC generic connection framework classes and interfaces

Mobile Information Device Profile. Because the category served by the CLDC encompasses so
many different types of personal devices, potentially many different profiles are necessary to
support them all. The most popular and well known of these isthe Mobile Information Device

Profile (MIDP), sometimes called the MID Profile. The MIDP layers atop the CLDC and defines a
set of user interface (UI) APIs designed for contemporary wireless devices.

Following in the tradition of Java parlance, MIDP applications are called MIDlets. A MIDlet isa
Java application that uses the MIDP profile and the CLDC configuration. This book concentrates
on teaching you how to write MIDlets, because the vast mgjority of J2ME programmers will
encounter the CLDC/MIDP platform far more often than other 2ME platforms. And, from a
practical standpoint, the MIDP isthe only profile currently available.

Another profile, the PDA Profile, iscurrently in its definition stage. PDAs also
belong to the general category of mobile infor mation devices. The PDA profile
might never be implemented, however, because it's questionable whether it
offer senough differences and enhancementsto the M1DP specification to
warrant its development. The PDA Profile also poses portability challenges for
developers.

The MIDP specification, like the CDC's Foundation Profile, was produced by an expert group, in
this case, the Mobile Information Device Profile Expert Group, which is an international forum
that includes representatives from several companies in the mobile device arena. The MIDP
targets mobile information devices (MIDs), such as mobile phones, two-way pagers, and so forth,
which have roughly the following characteristics:

screen size of approximately (at least) 96x54 pixels
display depth of 1 bit

one- or two-handed keyboard, touchscreen input device
128 KB nonvolatile memory for MIDP components

8 KB nonvolatile memory for application-persistent data
32 KB volatile runtime memory for Java heap

two-way wireless connectivity

Because the range of MID capabilitiesis so broad, the MIDP established a goal to address the
least common denominator of device capabilities. The MIDP, therefore, specifies the following
APlIs:

application (MIDP application semantics and control)
user interface

persistent storage

networking

timers

Table 1.5 lists the packages that comprise the MIDP.

Table 1.5. MIDP Packages

MIDP Package Name Description

Jjavax.microedition. lcdui |Ul classes and interfaces

Javax.microedition.rms Record management system (RMS) supporting
persistent device storage

Javax.microedition.midlet|MIDP application definition support class types

Jjavax.microedition.io MIDP generic connection framework classes and
interfaces

java.io Standard Java |0 classes and interfaces

liava.lang VM classes and interfaces

10

ljava.util 'Standard utility classes and interfaces

You'l learn more about the programming details of the APIsin Table 1.5 in chapters 3 through 9.

A MIDP implementation must consist of the packages and classes specified in the MIDP
specification. Additionally, it can have implementation-dependent classes for accessing native
system software and hardware.

Figure 1.3 juxtaposes the CDC and CLDC platform stacks. There is nothing inherent in either the
CDC or CLDC that prohibits a manufacturer from porting either platform to a given family of
devices. Nevertheless, the platform stacks—specifically, the configuration and profile features—
have been specified to address practical limitations of the different families of hardware devices.

Figure 1.3. The CDC targets fixed-connection, shared, stationary devices. The
CLDC targets personal, mobile, limited-connection devices.

Application Application
Foundation Profile MIDP
cDC CcLDC
Host operating system Host operating system
Device hardware Device hardware

Device Application Management Systems

All 2ME applications—M Dlets and others—are real Java applications that run under the control
of aJava VM. But what controls the Java VM, for instance on a mobile phone? There's no
command shell from which you can invoke your favorite Java applications like you do on your
workstation. Starting, stopping, and managing the execution of J2ME applicationsis controlled by
application management software (AMS) that resides on the device. In fact, the AMS controls the
entire application lifecycle, from installation, upgrade and version management, to removal of
application software.

The device manufacturer typically provides the AMS software. Thisisthe most logical scenario
because AMS software must work in conjunction with the device's native system software, which,
presumably, the manufacturer knows best. Nevertheless, third parties can also develop AMS
systems for specific devices. AMS software could be written, for example, in Java or in some
native language such as C.

Understanding the issues surrounding application management is important for the 2ME
developer. Chapter 10 discusses application management. Y ou must be aware of the ramifications
of your choices regarding packaging, licensing, charging for use, and so forth, and how these
decisions will affect the usability and viability of your software.

11

Chapter Summary

The J2ME platform addresses two classes of pervasive computing devices. The first class consists
of stationary devices with fixed network connections such as TV set-top boxes. The second
consists of personal, mobile devices with intermittent network connectivity, such as PDAs, mobile
phones, and so on.

Different combinations of J2ME configurations and profiles support these two classes of devices.
The CDC configuration and Foundation Profile support the former class of devices, and the CLDC
configuration and MIDP profile support the latter.

A configuration attempts to provide interfaces for system-level services. A profile attemptsto
provide standard interfaces for application-level services. The configuration enables the profile,
providing the necessary medium and mechanisms.

Devices must have some AMS to "bootstrap™” the process of provisioning J2ME applications on
devices. The device manufacturer usually provides the AMS.

12

Chapter 2. The MIDP Application Development
Process

Designing and Coding
Compilation

Preverification

Packaging

Deployment and Execution
Using the 2ME Wireless Toolkit

Asyou aready know, J2ME applications are Java programs and execute under the control of a
Java VM. For thisreason, al J2ME devices must support a Java runtime environment. MIDP
applications, like any other application, go through a development cycle. This chapter discusses
the development cycle and process for MIDP applications.

Disconnected devices like mobile phones typically don't have devel opment environments built
into them. Without a devel opment environment on the device itself, developers must do cross-
platform devel opment—develop an application on another system, download it to the device, and
then test it there. Having to constantly download the application-in-progress to the device in order
to test it makes the processes of development and testing challenging and tedious.

Emulators provide an aternative. They simulate the device execution environment and allow you
to perform the full development cycle on another system. Emulators provide an environment that
supports editing, compilation, execution, and debugging. Such an environment is advantageous
because it lets you avoid the repetitive download-and-installation cycle to the device. It also lets
you avoid the problem of buggy programs crashing your maobile device.

Various mobile device manufacturers and third parties offer emulators that run on standard
desktop operating systems. The Java Software division of Sun Microsystems, for example, offersa
reference 2ME Wireless Toolkit (2MEWTK), which runs on Windows and Unix platforms. It
contains an emulator, compiler, VM, class libraries, and other useful development tools. Y ou can
download it free of charge from http://java.sun.com.

The development process for J2ME applicationsis largely similar to that of regular Java program
development, with afew differences. The application devel opment process consists of the
following steps:

1. Design and code— Write the program.

2. Compile— Compile the program with a standard J2SE Java compiler.

3. Preverify— Perform preverification processing on the Java classes prior to packaging:
check for the use of floating point operations and finalize methods in the Java classes.

4. Package— Create a JAR file containing the application resources; create an application
descriptor file containing application metai nformation.

5. Deploy— Place the application resources under the control of the emulator.

6. Execute— Run the application using the emulator.

7. Debug— Identify and isolate program bugs and make corrections to source code.

The preverification and packaging stages are new and unigue to the 2ME application process and
will be explained shortly.

Y ou can perform all of the foregoing steps by hand using a command shell and command-line
versions of the development tools. In this chapter, I'll first show you each step using only the

13

http://java.sun.com/

command-line tools so you can understand how the process works conceptually. Thereafter, I'll
use the Java Software reference 2ME Wireless Toolkit emulator.

Incidentally, the command-line examples shown in this book use the Unix shell syntax supported
by the GNU project's bash shell. With afew syntax changes, the examples are still relevant for a
Microsoft Windows MS-DOS prompt shell.

| don't discuss the source code here, because the focus of this chapter isto see how to take a
perfectly valid CLDC/MIDP application through the whole application development cycle. In
chapter 3, I'll start to analyze code to show you the toolkit abstractions and programming model
and to explain the essential parts of the application.

The GNU project has produced literally hundreds of Unix style utilitiesand
applications. They have been ported to run on a variety of OS platforms,
including Windows. These tools include everything from Unix utilities, shells,
compilers, linkers, and sour ce code control tools, to applications such as
PostScript viewer s, the Emacstext editor, and sophisticated image processing
applications, just to name a few.

The GNU resour ces are maintained under the auspices of the Free Software
Foundation (FSF). You can find infor mation about the GNU project and the
Free Softwar e Foundation at the Free Software Foundation Web site,
http://www.fsf.org.

Designing and Coding

Before you can begin an actual development cycle, you must first create the directory structure
that will support the development of your MIDlet suite. A MIDlet suite is a collection of MIDlets
that share common application resources. Y ou'll learn further details about these shared MIDlet
resources in later chapters of this book.

| first create a directory called Hel loWor Id, which is the name of our first example application,
under the apps/ directory of the wireless toolkit installation. This directory is the root of your
new project. A project isan organized aggregation of resources—source code, resource files,
compiled files—specific to one or more related applications.

The project root directory contains the subdirectories shown in the following sample code:

$ pwd
/cygdrive/c/J2mewtk/apps/Hel loWorld

$ Is -F

bin/ classes/ res/ src/ tmpclasses/

Thereisareason for using this precise directory structure, which | will explain later when you
learn how to use the Wireless Toolkit Emulator. However, even if you don't plan to use the 2ME
Wireless Toolkit, this organizational structure is a reasonable one to start with. Table 2.1 explains
the contents and purpose of these directories.

| won't discuss actual application design here, because that topic is beyond the scope of this
chapter. The goal hereis not to discuss how to design Java applications or even MIDP
applications. Subsequent chapters, however, will talk about organization of MIDP applications.

14

http://www.fsf.org/

Table 2.1. Subdirectories of Projects Created by the J2ME Wireless Toolkit

Subdirectory Directory Contents

Name

Ibin Application files: . jar file, . jad file, MANIFEST .MF

‘Classes \Compiled and preverified .class files

res Application resource files, such as . png formatted image files in
PNG format

src Application source files

tmpclasses Compiled, unverified .class files

Compilation

The next step in the actual development cycle after creating your program is to compile the
program source. Before you attempt compilation, make sure your shell environment's command
path list includes the path to the directory that contains the 2ME utilities on your system.

The general form of the compilation lineis

$ javac —d <tmpclasses dir> -bootclasspath <midpapi.zip location> \
<location of Java source file(s)>

The —d directive tells the compiler the directory in which to write the unverified compiled classes.
The -bootclasspath directive indicates the location of themidpapi . zip file, which comes
with Java Software's 2ME Wireless Toolkit and contains al the MIDP classes you need to write
J2ME applications. Devel opment environments from commercial vendors aso include thisfile.
The -bootclasspath directive aso tells the compiler to override any CLASSPATH
specification you might have set in your shell environment. Note that this must be arelative
pathname, relative to the project's root directory. Finally, you specify the path names of the Java
source files you are compiling.

To compile the HelloWorld MIDlet suite from the apps/He Il loWor 1d/ directory, use the
following command:

$ javac -d tmpclasses \
-bootclasspath ../.._/lib/midpapi.zip src/HelloWorld.java
$

The —d directive tells the compiler to write the unverified compiled classes to the tmpclasses
directory under the Hel loWorId/ directory. The -bootclasspath directive specifiesa
pathname relative to the current directory. Finally, the last argument specifies the relative
pathname of the Hel loWor Id . java sourcefile.

You learned in chapter 1 that the MIDP and CLDC libraries define the complete platform for
building MIDP applications. In consequence, you don't need to include the path of any J2SE
installation in your environment's CLASSPATH when compiling your applications. In fact, you
can'tincludeit. If you do, you'll get compilation errors because the compiler will find conflicting
definitions between the J2SE and J2ME libraries.

After compiling your files, the tmpclasses directory contains the unverified .class files:

$ Is -1 tmpclasses/

15

total O
-rw-r—-r—- 1 vartan None 922 HelloWorld.class

$

Preverification

The next step after compilation isto preverify the . class files you just compiled. To do so, issue
the following command:

$ preverify -classpath "../../1lib/midpapi.zip;tmpclasses” -d classes

tmpclasses
$

If you're using the 2ME Wireless Toolkit, you must separate the class path elements with
semicolons, and you must quote them if you're using a Unix shell in order to avoid the shell
interpreting the semicolon. The class path elements represent the directories from which classes
areto be loaded. The class path el ement separator—a semicolon in this case—is platform specific.

The -d argument indicates the destination directory to which the preverified output classes
produced by this command are to be written. Finally, the trailing directory name, tmpclasses,
indicates the location from which to get the unverified class files that were produced from the
previous compilation step.

Running the above preverify command creates preverified . class filesinthe classes
directory, as you specified:

$ Is -1 classes/
total O
-rw-r--r-- 1 vartan None 922 HelloWorld.class

$

The preverify command is aclassfile preverification tool that is used as part of the classfile
verification process. Classfile verification in CLDC, asin J2SE, is the process of verifying the
validity of Java class files and rejecting invalid ones. Unlike the J2SE verification process,
however, classfile verification in CLDC involves two-steps:

1. Phase 1—off-device preverification
2. Phase 2—in-device verification

The use of the prever iy command that you just experienced represents the off-device
preverification phase—Phase 1—of this two-step verification process. In areal environment, this
first phase usually occurs on the server from which MIDP applications are downloaded to mobile
devices. Typically, the server performs this step before it makes an application available for
download.

The reason for this new verification process is that the conventional J2SE classfile verifier
requires more memory and processing power than typical mobile devices can realistically supply.
It uses about 50 KB of binary code space and 30 to 100 KB of dynamic RAM at runtime. The new
CLDC verifier requires much less RAM and is much more efficient. For typical classfiles, the
CLDC verifier uses only about 10 KB of code space and requires only 100 bytes of dynamic RAM
at runtime.

16

The new verifier can achieve these efficiency gains because of the new algorithm it uses. This new
algorithm, however, requires the presence of specia attributes in each Java classfile. The
preverifier writes these new attributes to each Java class file. The verifier then uses the attributes
generated by the preverifier. The new classfiles are about 5 percent larger than their unmodified
versions.

The preverifier performs two tasks:

e It makesal subroutine calls "inling," replacing each call to methods that contain the byte
codes jsr, jsr_w, ret,andwide ret with semantically equivaent code that doesn't
contain these instructions.

e Itinserts stack map attributes into what is otherwise a normally formatted Java classfile.

These new classfiles are still valid J2SE classfiles. That is, the new stack map attributes are
simply ignored by the J2SE verifier. The inclusion of stack map attributes has been implemented
with the extensible attribute mechanism, which is supported by the Java class file format defined
by the standard Java virtual machine. This means that CLDC classfiles are upwardly compatible
with the J2SE virtual machine.

The attributes that the preverifier writesto CLDC classfiles are called stack map attributes. Stack
map attributes are defined by aStackMap_attribute data structure. These attributes are
subattributes of the Code attribute defined and used by the conventional J2SE virtual machine.
The name stack map reflects the attribute's nature as a description of the type of alocal variable or
operand stack item. The name is so chosen because these items always reside on the interpreter's
stack.

The Code_attribute typeisanother type defined by the standard virtual machine. It defines
the Code attribute used by the standard J2SE VM. For complete descriptions of these structures,
please refer to the Java Virtual Machine Specification, which is referenced in the References
section at the back of this book. The CLDC preverifier defines the following
Stackmap_attribute structure that defines the stack map derivative type as follows:

StackMap_attribute

u2 attribute_name_index;
u4 attribute length;
u2 number_of entries;
{
u2 byte code offset;
u2 number_of locals;
ty types of locals[number_of locals];
u2 number_of stack_ items;
ty types of stack_items[number_of stack items];
} entries [number_of entries];

}

For further details about the definition and function of each of these fields, please refer to the
Connected, Limited Device Configuration Specification, which is also referenced in the
References section of this book.

Packaging

The next step after preverification isto package your application. MIDlet suite packaging involves
two entities:

17

e aJavaarchivefileof the MIDlet files
e anoptional application descriptor file

Although you can choose to optionally package J2SE applications for deployment, the MIDP
specification requires that you package MIDIet suites using the Java archive (JAR) utility. In fact,
the MIDP specification requires that all MIDlet suites be delivered to devices in a compressed
JAR file format. Normally, serversthat support delivery of MIDlet suites to devices store MIDlet
suite filesin compressed JAR format. Either the server or the entity that uploads the file to the
server creates the compressed JAR file.

A JAR archive of a MIDIet suite can contain severa types of files, as the following list indicates:

o amanifest file that describes the contents of the JAR file
e Javaclassfilesthat comprise the MIDlets in the archive's MIDlet suite
e application resource files used by the MIDlets in the MIDlet suite

The JAR manifest file contains attributes that describe the contents of the JAR file itsdlf. Its
presence in the JAR fileis optional.

Anather optional description file, called an application descriptor file, contains information about
the MIDlet suite. Thisfileis sometimes called a Java application descriptor (JAD) file. Each
MIDlet suite can optionally have an associated application descriptor file.

The application descriptor fileis used for two purposes. The device application management
software (AMS) uses the information in thisfile primarily to verify that the MIDletsin the JAR
file are appropriate for the device before it downloads the full JAR file. The AMS also uses the
information to manage the MIDlet. The devices AMS isresponsible for installing and uninstalling
MIDlet suites. It also provides MIDlets with the runtime environment required by the MIDP
specification. Finaly, the AMS manages MIDIlet execution, namely, the starting, stopping, and
destruction of al MIDlets.

Finally, the MIDlets themsel ves can extract from the JAD file configuration specific attributes that
represent MIDIet parameters. The application resource file is the primary mechanism for
deploying MIDP application configurations.

Creating the JAR Manifest File

If you choose to supply a manifest file with your MIDIlet suite JAR, you need to create it before
you create the JAR archive itself. Y ou can create thisfile with any text editor. Afterwards, create
the JAR file using the standard J2SE JAR utility. The JAR utility isincluded as part of the
Wireless Toolkit utilities.

The MIDP specification requires that certain fields be present in the manifest file. The required
fields are shown in Table 2.2.

A manifest file contains lines of attributes, one attribute per line. Each attribute consists of akey
and avalue. The key isfollowed by a colon, which separates it from its associated value. The
MANIFEST .MF filefor theHel loWor Id program resides in the Hel loWor 1d/bin/ directory.
It lookslike this:

MIDIet-1: HelloWorld, HelloWorld.png, HelloWorld
MIDIet-Name: HelloWorld

MIDlet-Vendor: Vartan Piroumian

MIDlet-Version: 1.0

MicroEdition-Configuration: CLDC-1.0

18

MicroEdition-Profile: MIDP-1.0

Notice the attribute name MIDIet-1: in the MANIFEST . MF file. The manifest file distinguishes
the different MIDlets by numbering them MIDlet-1 through MIDIet-n. The number 1 must
identify the first MIDlet.

There are three valuesto the MIDIet-1 attribute. Thefirst is the name of the MIDlet suite that
contains this MIDlet. This value can be a human-readable name. The second value is the name of
the PNG image file that the AM S uses as the icon to represent this MIDlet. The last value isthe
name of the MIDlet classfile that defines the MIDIet's execution entry point.

Perhaps the most important attributes are the MicroEdition-Configuration and the
MicroEdition-Profi le attributes. The AMS uses these values to determine if the MIDlet is
suitable for the target device.

The MIDP specification aso alows optional fieldsin the manifest file. Table 2.3 shows the
optional manifest filefields.

Table 2.2. Required MANIFEST.MF File Attributes

Attribute Name Description

MIDIet-Name The name of the MIDlet suite

MIDIet-Version The MIDlet suite version number, in the form
<major>.<minor>.<micro>, defined by the JDK product
versioning specification scheme

MIDlet-Vendor \The application developer (company or individual)

MIDIet-<n> One per MIDlet in the suite; contains a comma-separated list of
the MIDlet textual name, icon, and class name of the nth MIDlet in
the suite

MicroEdition- The J2ME profile needed to execute the MIDlet

Profile

MicroEdition- The J2ME configuration needed to execute the MIDlet

Configuration

Creating the MIDlet Suite JAR File

Now that you've created the manifest file, you're ready to create the application JAR file. Use the
following jar command:

$ jar cmf bin/MANIFEST.MF bin/HelloWorld.jar -C classes/ . -C res .
$

Table 2.3. Optional MANIFEST.MF File Attributes

\Attribute Name IDescription

MIDlet- A description of the MIDlet suite
Description

\M IDlet-Icon |The name of a PNG file contained by the JAR

MIDIet-Info-URL |A URL that contains additional information about this MIDlet suite

MIDIet-Data-Size |The minimum number of bytes of persistent data that the suite
requires

This command creates the JAR file for your He l loWor Id MIDIet suite. Listing the contents of
the bin/ directory reveals the newly created Hel loWor Id. jar file:

19

$ Is -1 bin

total 2

-rw-r—--r-- 1 vartan None 1393 HelloWorld. jar
-rw-r——-r—-— 1 vartan None 193 MANIFEST.MF

$

Listing the contents of the JAR file you just created produces the following output:

$ jar tf bin/HelloWorld.jar
META-INF/
META-INF/MANIFEST .MF
classes/./
classes/./HelloWorld.class
HelloWorld.png

$

Asyou can see, the manifest fileisincluded in the JAR file. The JAR file contains the

single .class filefor our Hel loWor Id application. It also contains a - png portable network
graphics format file that is intended to be a suitable choice for use as the application'sicon. The
MANIFEST . MF file, of course, was created by hand as described previoudly.

Creating the MIDlet Suite Application Descriptor File

The application management software on a device such as a mobile phone uses the JAD fileto
obtain information needed to manage resources during MIDlet execution. The application
descriptor fileis optional, but useful nonetheless. Y ou can use any text editor to create it, but you
must givethefilea . jad extension. To avoid confusion, | recommend giving it a name that
represents the whole MIDl et suite.

Table 2.4. Required Application Descriptor File Attributes

Attribute Name Description

MIDlet-Jar-URL The URL of the MIDlet suite JAR file

MIDlet-Jar-Size |The size (in bytes) of the JAR file

MIDlet-Name The name of the MIDlet suite

MIDlet-Vendor The application developer (for example, a company or individual
name)

MiDlet-Version The MIDlet suite version number, in the form

<major>.<minor>.<micro>, defined by the JDK product
versioning specification scheme

MicroEdition- The J2ME configuration required to execute MIDlets in this suite
Configuration

MicroEdition- The J2ME profile required to execute MIDlets in this suite
Profile

Table 2.5. Optional Application Descriptor File Attributes

\Attribute Name \Description

MiDlet-Data-Size The minimum number of bytes of persistent data that the suite
requires

MiDlet-Delete- Indicates whether AMS should request user confirmation before

Confirm deleting a MIDlet

MiDIet-Description |A description of the MIDlet suite

MIDlet-lIcon \The name of a PNG file contained by the JAR

20

MIDlet-Info-URL

/A URL that contains additional information about this MIDlet suite

MIDlet-Install-

Indicates whether the AMS should notify the user of a new MIDlet

Notify installation

In addition to the optional fieldslisted in Table 2.5, the JAD file can contain MIDl et-specific
attribute fields defined and named by the application developer. Y ou can name these attributes
anything you like; however, you should not use "MIDIet-" in the attribute name. This prefix is
reserved for standard attribute names defined by the MIDP specification.

The JAD filefor theHel IoWor Id program aso residesin theHel loWor 1d/bin/ directory,
and its contents looks like this:

MIDIet-1: HelloWorld, HelloWorld.png, HelloWorld
MIDlet-Jar-Size: 1393

MIDlIet-Jar-URL: HelloWorld.jar

MIDIet-Name: HelloWorld

MIDIet-Vendor: Vartan Piroumian

MIDIet-Version: 1.0

In particular, noticethe MIDlet-Jar-Size attribute field. When you are using command-line
tools, you must manually edit the JAD file to update the value of theMIDlet-Jar-Size
attribute each time you build the JAR file to accurately reflect the size of the JAR file. The
directory listing of the bin/ directory indicates that your JAR fileis 1393 bytesin length.
Therefore, the JAD file must accurately reflect this size, which it does.

Notice that some of the fields appear in both the manifest and JAD files. The reason isthat the
MIDP specification requires their presence in both files. Three attributes in particular—MIDlet-
Name, MIDlet-Version, and MIDlet-Vendor—are worth special attention. They must have
the same value if present in both the JAD and manifest files. The MIDP specification stipulates
that a JAR file must not be downloaded if these three values are not duplicated in these two files.

Deployment and Execution

Y ou've now gone through the edit (program creation), compilation, preverification, and packaging
steps. Finally, you're ready to deploy and run your application. In the real world, the MIDIet
developer would upload the JAR file to some application provisioning system. (Application
provisioning systems are discussed in chapter 10.) Provisioning systems offer applications for
download following deployment. Users download the MIDIet suite JAR file to their device and
execute it with the help of the device's application management system software.

For the purposes of the discussion in this chapter, deployment means placing the files under the
control of the 2ME Wireless Toolkit Emulator. Y ou can then execute the application in the
emulator, simulating its execution on an actual device.

Instead of just showing you how to place the packaged application files under the control of the
Wireless Toolkit for execution, the next section shows you how to perform the full devel opment
cycle that you just completed with the Wireless Toolkit. The latter part of that discussion will
show you how to execute your applications.

Using the J2ME Wireless Toolkit

21

This section shows you how to use the 2ME Wireless Toolkit from Sun's Java Software division
to perform al the steps of the development cycle that you did manually. Y ou can download the
J2ME Wireless Toolkit free of charge from the Java Software Web site at Sun Microsystems,
http://java.sun.com. Download the version appropriate for your OS platform, and follow the
installation instructions provided with the download.

Creating a Project

The Wireless Toolkit features and functions are based on projects. A project represents the
development of a suite of one or more MIDlets. Completion of the project development cycle
resultsin the creation of application JAR and JAD files and a manifest file that describes the JAR
file.

The KToolbar isthe main utility of the Wireless Toolkit. Figure 2.1 shows the KToolbar main
window. Notice that, upon startup, it prompts you to create a new project or open an existing one
and reuse the source code that you've already seen referenced in the command-line examples.

Figure 2.1. The KToolbar is the main window from which you access all of the
Wireless Toolkit's functions.

S5 1zME Wireless Toolkit _ =101x|
File Edit Hela

[6. Hew Project . !| BZ Open Project . ’ I | ; | B Clear Consale
D!'l"ltﬂ'l' aulGrave hane ;]

Creats m mew project oF open An exiating one

Thefirst step, then, isto create a new project. I'm going to create a HelloWorld project and reuse
the source code that you've already seen. Figure 2.2 shows the window that pops up when you
select New Project... from the KToolbar menu bar.

Figure 2.2. To create a new project, you must define at least one MIDlet. You must
supply the project name and the name of the main Java class for the first MIDlet.

EHE e w Project " o |
Praject Mama
MIClet Class Mame |

Zreate Brojact | Cancal |

After you enter and submit the project name and MIDIet class name, the window shown in Figure
2.3 appears. Thiswindow prompts you for required information about your project, which will be
used to create the JAR manifest and JAD files. Notice that the Required tab is always shown
initially when this window appears. The attributes you see correspond to those in Table 2.4, the
required application descriptor attributes. Y ou can modify the default information, for example,
theMIDlIet-Vendor or MIDlet-Jar-URL attributes.

22

http://java.sun.com/

Figure 2.3. The Wireless Toolkit creates a manifest and JAD file for you based on
the information you supply in this screen, which represents the required
application descriptor fields.

Eﬁ' settings for project “HelloWorld™ 5[
: Requiredi| Optional| Usar Defined | MIDIets |

by Walle
miDlet-Jar-Size 100
MIDlet-dar-LIRL HalloWarld.jar
miDIet-Karme Helloworld
mIDIet-Yendar Sun Microsystems
MIDIet-Yarsion 1.0
MicroEdition-Configuration CLDC-1.0
MicroEdition-Prafile MICP-1.0

(o] o4 Cancel

Figure 2.4 shows the panel that appears when you select the Optional tab. It allows you to enter
information about the optional MIDIet attribute fields you saw previously in Table 2.5.

Figure 2.4. This panel lets you edit the optional meta-information attributes of your
MIDlet's application descriptor file.

23

Eﬁ! settings for project “HelloWorld™ El

Reguirzd Optional | Usar Defined | MiDets |

by Walue

M0l et-Data-Size
MIDlet-Delate-Confirm
MIDlet-Description
MIDIet-lcan
MIDIet-Info-LIFL
mIC I et-Install- M otify

o] 4 Cancel

After completing this step, the KToolbar main window prints three lines of informational
messages in its diagnostics output panel. It tells you where to place your Java sourcefiles,

application resource files, and application library files. Figure 2.5 shows the updated K Toolbar
window.

Figure 2.5. After you complete the entry of the required MIDlet suite information,
the KToolbar indicates where to place application specific files. Notice that
resource files go in the application's res/ directory, not the bin/ directory.

m]iHE Wireless Toalkit - HelloWorld

File Edit Projct Hel

Eﬂmﬁiﬁﬂ B Open Project . | 9, Setings .. | & Bulid | & Run | B Clear Corsole I
Crevice: [Defauttiray®hone =l
Creating project "Hellolorld™
Flace Javs zource filesz in "cild2wswek’ appa’\HelloWorldiare™

Flace Application cesource €iles in "¢\ Jimevtk\appa\HelloWocld\cea™
Place Applicarion libpary files inm "o\ Josewek)\sppaiHellaWse ldy 1ik™

24

Version 1.0.3 of the 2ZMEWTK adds a User Defined tab to the main Settings panel. Y ou can see
this User Defined tab in Figures 2.3 and 2.4. Figure 2.6 shows the User Defined panel that appears
when you click the User Defined tab.

Figure 2.6. Application developers can define attributes that are specific to one or
more MIDlets in the MIDlet suite.

Requirzd | Optional Usar Defined | MIDlets |

key | alue |

Add

o] 4 Cancel

The panel shown in Figure 2.6 lets you define application attributes. Notice that the panel provides
an Add button, which lets you add additional attributes. Chapter 9 contains some examples that
show you how to add custom attributes using the Wireless Toolkit and how to use the attributesin
your applications.

If you look again at Figures 2.3 and 2.4, you'll see that the Required and Optional panels don't let
you add any attributes to them. Y ou can only edit the val ues of the attributes that are already
present. You can't add arequired field, because these are standardized. The set of optional fieldsis
also standardized, even though their presenceis optional.

After you've finished thisinitial MIDlet suite definition cycle, you can always edit the values of
any of the MIDlet attributes. Select the Settings button on the KToolbar menu bar. When you do,
the window in Figure 2.3 appears again. Make the desired changes and click OK.

Placing Source Code in the Project

25

Now it's time to place the application source file inside the project, as directed by the KToolbar
diagnostic output panel. When you create a new project, the KToolbar creates the corresponding
directories under its installation directory structure, as you saw previously when using the
command-line shell. Recall that on my system, this directory is located at
/cygdrive/c/J2mewtk/apps.

Under this directory exists the Helloworld project directory. Y our next step isto manually place
the HelloWorld.java source file under the Hel loWor 1d/src/ directory. Of course, if you were
really building a project from scratch, you would first create the source using your favorite text
editor.

Compiling the Project

Now you're ready to compile. Click the Build button on the KToolbar button panel of the
KToolbar main window. The Wireless Toolkit compiles the Hello-World.java source and
produces the diagnostic output in the KToolbar main window, which appearsin Figure 2.7. Of
course, if your compilation fails, the usually friendly compiler output would appear in this panel.

Figure 2.7. Compiling your project produces additional diagnostic output in the
KToolbar main window.

S0 12 Wiseless Toolkit - HelloWorld E =10 x|
File Edit Project Heb

S, Hew Project .. | & Open Project | &, Setings .. | [% Euild II S Run I L% Clear Gonsole |
Divicer [Detaul3ea@none =l

Creating project "HelloWorid™

Flace Jave source files in "ci\J2mswtk)appa\HelloWorldiscc®

Flace Applicatior resource files in "e:\JZmewck\appezi\HelloWorldyres™
Flace Application libracy filea dn e\ JZmcwtk' appa’ilalloWor ldy Lib"
Froject seccings sawed

Building "HelloWocld®

Fuild complers

If you're not convinced of the results of your compilation, you can use your command shell to
verify the existence of the . class filesin the tmpclasses/ and classes/ directories.

$ pwd

/cygdrive/c/J2mewtk/apps/Hel loWorld/tmpclasses

$ Is -1

total 8

-rw-r—--r-- 1 vartan None 2036 HelloWorld.class
$

$ cd ../classes/

$ pwd

/cygdrive/c/J2mewtk/apps/Hel loWorld/classes

$ Is -1

total 8

-rw-r--r-- 1 vartan None 2036 HelloWorld.class

Asyou learned aready, the tmpclasses/ directory containsthe . class files produced by the
compilation itself. The classes/ directory contains the preverified files produced by the
preverify utility. The 2ZMEWTK runsthe preverify utility automatically when you click
the KToolbar Build button.

26

Packaging the Project

After you compile, you must package the application as you did using the command-line tools.
There is no Package button on the KToolbar button panel. Instead, pull down the Project menu on
the KToolbar menu bar, and select the Package menu item as shown in Figure 2.8.

Figure 2.8. Select the Package menu option to package your application. This step
produces the application JAD and JAR files.

BT 120ME Wireless Toslkit - HelloWarld .35 =10]
Fie Edit ERGLE Help

W, hNew ¥ Buig en Project .. | ﬁ,ﬂgﬁnqs... | a gﬁ"” %Eun | Eglenrt:nmnla
— Ll
e KT B
Projecr ™ Dl
Froject s DL

eflings ...

Building &, setl
Puild complete

Figure 2.9 shows the diagnostic output produced when you've completed the packaging step.
Notice that it indicates that the Wireless Toolkit has produced a HelloWorld.jar and a
HelloWorld.jad file.

Figure 2.9. The packaging step actually compiles the application before packaging
it. The diagnostics output reflects the execution of the compilation and packaging

steps.
240 12E Wirebess Taolkit - HelloWorld - =[S
Fila Edit Projact Help
@, heew Project .. I B open Prject ... | &, Setings .. | |+ guﬁ—” &y, Rur | B clear Consale |
Device: [Detauniray@nona =]

Project "HelloWorld™ losded

Project settings sawed

Building "HelloWozld®

Build complece

Project seteings saved

Building "HelloWeorld®

Weote o \JZmevck\appaiHelloWorldybiniHelloWorld, jar
Wrote o1 vimevekisppriHelloVorldibini\HellsWasrld, jad
Build complece

Once again, you can verify the existence of these files by manually listing the contents of the
project'sbin/ directory:

$ pwd

/cygdrive/c/J2mewtk/apps/Hel loWorld/bin

$ Is -1

total 3

-rw-r—--r-- 1 vartan None 282 HelloWworld. jad
-rw-r—--r-- 1 vartan None 6960 HelloWorld. jar
-rw-r—--r-- 1 vartan None 297 MANIFEST .MF

$

27

Actually, packaging your application using the 2ZMEWTK first compiles and preverifies your
program and then packages it. So you can skip the explicit compilation step described in the
previous section and just package your application before deploying and testing it. The explicit
compilation step is important, however, if you want to compile your program without packaging it.

Deploying the Application

Thereisreally no separate deployment step when you use the Wireless Toolkit. The toolkit goes
as far as creating the entities that you would have to deploy in areal system, namely, the
application descriptor file and the application JAR file. Chapter 10 discusses what you would do
with these files in areal-world system that offers MIDP applications for download to real devices.

Executing the Application

Executing the application means emulating the runtime environment of an actual mobile device.
One of the nice features of the Wireless Toolkit Emulator isthat it can emulate severa real
devices, aswell as some default devices that represent some lowest-common-denominator device
features.

The KToolbar button panel contains a combo box labeled Device underneath the main menu bar.
Y ou can select one of six devices from the combo box. The selected item specifies to the emulator
which device to emulate when running applications. Figure 2.10 shows the list of devices that you
see when you select the combo box.

Figure 2.10. The Wireless Toolkit can emulate five devices. Two of these are real
devices.

S50 12ME Wireless Toolkit - HelloWarld . =10 x|
Fila Edit Projct Help

&, Hew Project. I EE Open Project .. | ¥, Setings .] @ Buiid | &y Run | B Clear Corsole I

[nEETER Diefaultsray™hone

Defaull3ray®hone
MirimunPhone
Wotorola_iB5s
Palm0s_Device

Build chore2vaHandheld

After selecting your device of choice, you're ready to run your application. To run your
application in the emulator, simply click the Run button on the KTaoolbar button panel. | chose the
Default Color Phone emulator. Figure 2.11 shows the window that appears simulating the real
device environment.

Figure 2.11. The AMS main screen enables you to select the MIDlet you wish to
execute. If more than one MIDlet is present in the MIDlet suite, you'll see a list of all
of them. Notice the Launch button provided by the AMS system.

28

Hell oo Id

Figure 2.11 represents the main application management software screen that you would see on a
real device. It enables you to select the MIDlet you want to execute. Typically, you would start the
AMS system from a menu on your mobile device. Figure 2.12 shows the display after you select
the HelloWorld item listed on the display. Thisis the screen displayed by the MIDlet.

Figure 2.12. This is the single screen displayed by the Hel loWor 1d application.
Notice that there is no button to exit the application. You can click the red Hang Up
button to return to the AMS main screen.

29

ello, World
e first hilCiet!

Figure 2.12 isthe same figure as Figure 3.1 in chapter 3. Chapter 3 discusses the HelloWorld
application source code and its variants in detail. In this chapter, | discuss only the application
development process.

Figure 2.13 shows the 2ZMEWTK emulator main window after you complete emulation of the
Helloworld MIDlet. Notice that it produces some diagnostics information about the emulation
process.

Figure 2.13. The emulator writes diagnostics output to the console.

30

ST 12ME Wireless Toolkit - HelloWarld o =10x]

Filz Edit Project Hek

8 Hew Profect .. | B Open Project . | &, Setings .. | & Bullg | S Run [L% Clear Console
Dievicer [rlpfaulr':n orPhone El
100 =]

HelloBorld. jac

Sun Miceosystens

Execution completed successfully

103381 byrecodes exesured

71 thresd awicches

311 classes in the system (including system classes)

#6565 dynamic objects allecated |36116 bytes)

2 garbage collections (14463 bytes collected)

Total heap size JOD000 byres (currsncly 474256 bytes free) j

It's important to run your MIDlets using different devicesin the emulator to help you identify and
understand portability issues. Each device has unique display dimensions, buttons, soft key
support, and so forth. Furthermore, there are other portability issues for which no emulator can
possibly supply aredlistic device environment for all devices. For example, each device's native
software platform has different support time zone support, locale support, communications
protocol support, and so forth. You'll learn about these areas throughout this book.

Testing your applications on an emulator isan important first step.
However, it is not enough to ensure accur ate operation and portability,
and it's never an acceptable substitute for testing on areal device.
Making your applications portableisthekey totheir success.

Chapter Summary

The process for developing J2M E applications involves compilation, preverification, packaging,
deployment, and execution.

Y ou compile your MIDP applications using a standard J2SE compiler. A new preverification
utility produces verified . class filesthat can be interpreted by the KVM and a standard J2SE
VM dike.

Emulators are important tools for devel oping applications for mobile devices. They enable you to
doinitial testing without having to use areal device. Thisis particularly important for testing the
logical correctness of your applications, because test-and-debug environments are not available on
real devices. Emulators are no substitute for testing on real devices, however. Y ou must test every
aspect of an application on areal device before shipping it as a product.

The 22ME Wireless Toolkit contains application development and emulation tools that enable you
to perform al the steps in the development process, namely compilation, preverification,
packaging, deployment, and execution.

31

Chapter 3. MIDP Application Program Structure

The Application Execution Lifecycle
MIDlet Program Structure

The MIDIet State Model

The MIDP Ul Component Model
System Properties

Application Properties

In this chapter, you'll learn about the basic abstractions and programming model that the MIDP
defines. It's necessary to understand the basic MIDP programming model in order to write MIDP
applications. Y ou must also understand the abstractions defined by the user interface (Ul)
componentsin order to build user interfaces using the MIDP. Before looking at source code,
however, you must first understand the MIDlet execution lifecycle.

The Application Execution Lifecycle
Here's an example of the stepsinvolved in executing an application:

1. Start the emulator. Y ou'll see awindow appear that simulates the device interface. If
you're using the 2MEWTK v1.0.2, you'll natice that the emulator simply executes the
HelloWorld application because it's the only application present in the suite. Figure 3.1
shows the main screen of this MIDI etexecution. With the 2MEWTK v1.0.3, however,
you'll see aselection list of all MIDlets, even if thereisonly one.

Figure 3.1. This MIDlet run uses the default color phone supplied with the
toolkit. Notice the MIDlet title.

32

Elociouitcolorphane R =TF
=

2. Add asecond version of the program, called HelloWorld2, to the MIDlet suite. Y ou can
begin this process by pressing the Settings... button on the toolkit main window, which
you saw back in Figure 2.5 in chapter 2. First write the source code, and then placeit in
the project's src/ directory. Add it to the MIDlet suite by selecting the MIDlets tab of
the screen that displays the project settings screen. Figure 3.2 shows the configuration
screen after adding the new MIDlet.

Figure 3.2. Add new MIDlets to a suite using the MIDlets tab of the Settings
window.

33

Eﬁettings for project “HelloWorld"

Required' Optinnal' User Defined MIDlets

ey Marme [zarn Zlass
miD|et-1 HelloWvorld HelloWorld.png HelloWworld
miD|et-2 HelloWorld2 HelloWorld2.png HelloWorld2
(] Cancel

3. Now, build the project and then execute it. This time you see the display shown in Figure
3.3. Notice that now you see a menu that displays the names of both MIDlets contained in

the MIDlet suite. Because there is more than one MIDl et to execute, the AMS must
display amenu and allow you to select the one you wish to run. Of course, the emulator
takes on therole of areal device's AMS here.

Figure 3.3. When more than one MIDlet is available, the AMS displays a

menu showing you all of them. The AMS, not your application, creates the

Launch button. You must click it to invoke the selected MIDlet.

4.

[efaultColorPhonagn s bl
=

On aredl device, the device's AM S displays this menu. For example, Motorola and
Siemens phones both use standard select lists that allow you to select first the AMS, then
the MIDlet suite, and finally, the MIDIet. In other markets (in Japan, for instance), phones
might have a button labeled "Web," which launches the AM S and automatically starts a
Java-based Web browser. The MIDlets listed are those that are known to the AMS.

When you add a MIDlet to the suite, you're telling the toolkit that you want the new
MIDlet to be available for execution. When you build the MIDlet, the toolkit places
its.class filesin the MIDlet suite JAR file and updates the manifest and JAD files. This
behavior adheres to the 2ME specification, which, you recall, requires that MIDlets be
contained in aJAR file.

Select the Helloworld MIDlet and then click the Launch soft button to execute it. Figure
3.4 shows the single screen that it creates and displays.

Figure 3.4. This application's main screen contains atitle and a single line
of text.

35

5. Click (press) the red handset button ("hang up") on the emulator and you are returned to
the AMS main screen. Closing the emulator window ends the emulation. Y ou've now
completed the whole application execution lifecycle. Later in this chapter, you'll learn
more about the details of the MIDIet lifecycle and the MIDlet state model.

MIDlet Program Structure

Now that you understand the application execution lifecycle, it's time to look at the source code of
asimple MIDlet. Y ou might have already surmised that I'm going to start by showing you the
simplest MIDlet—the MIDP version of the inveterate "Hello World" program. Listing 3.1 shows
the source code for the first version of the HelloWorld MIDIet.

Listing 3.1 This is the MIDP version of the familiar HelloWorld program.

import javax.microedition.lcdui.Display;
import javax.microedition.lcdui.Displayable;
import javax.microedition.lcdui.Form;

import javax.microedition.midlet_MIDlet;

/**
Creates the "Hello world" program in J2ME MIDP.

Note that the class must be public so that the device
application management software can instantiate it.
*/
public class HelloWorld extends MIDlet

36

// The Displayable. This component is displayed on the
// screen.
private Form form;

// The Display. This object manages all Displayable
// components.
private Display display;

// A public no-arg constructor iIs necessary, even though
// the system calls startApp()! The AMS calls the

// class"s no-arg constructor to instantiate the class.
// Either create a public no-arg constructor, or declare
// no constructors, and let the compiler create a public
// no-arg constructor.

//

public HelloWorld(Q)

{
super();

public void destroyApp(boolean destroy)

{
form = null;
notifyDestroyed();
}
public void pauseApp(Q)
{
}
public void startApp()
{

// Create a Displayable widget.
form = new Form(*'Hello, World™);

// Add a string to the form.
String msg = "My Ffirst MIDlet!";
form.append(msg) ;

// This app simply displays the single form created
// above.

display = Display.getDisplay(this);
display.setCurrent(form);

}
}

First, notice that this application defines a class called Hel 1oWor Id, which extends
Javax.microedition.midlet.MIDlIet. All MIDlets must extend this class.

TheHel IoWorld classisthe primary class of your application. For this reason, it must be
declared public. Moreover, you must declare a public no-argument constructor, or ensure that
there are no constructors, in which case the compiler will define a no-argument constructor for
you. Readers who are familiar with Java applets will recognize the similarity between the applet
and MIDlet lifecycle control models.

37

When you select HellowWorld from the AMS main screen, the AMS launches your application and
instantiates the He I loWor I d class. Technically, it starts the VM (or ensures that one is running)
and instructs it to instantiate your class. The VM calls the no-argument constructor on the instance.

The AMSthen callsthe startApp() method. In Listing 3.1, the startApp(), pauseApp(),
and destroyApp () methods override abstract declarations from the MIDl et class. Notice that
al theinitialization code goes in the startApp() method rather than in the constructor. Y ou
certainly can put some initialization code in your constructor; it will be executed before the call to
startApp(). However, the startApp() method is aways called as the entry point for your
MIDlet.

What about amain() method? The Javalanguage definition requires all Java applications to have
amain() method with the following signature:

public static void main(String [] args)

If 2ME applications are real Java applications, as |'ve claimed previoudy, then there must be a
main method somewhere that isthe real entry point used by the VM to start the process of
executing the application. In fact, there is such a method. It's part of the MIDP implementation
(not the application), and, typically, the AMS software calls it. The AM S handles application
invocation requests, for instance, by spawning athread for each MIDlet startup request and
controlling the MIDlet from that thread. Actual details are implementation dependent. In Sun's
J2ME Wireless Toolkit, the class com.sun.midp . Main definesthe main() method.

The startApp() method creates an object called aform and passes a string to the constructor
that represents the form'stitle. A formis an instance of the class

jJjavax.microedition. Icdui .Form, whichisakind of screen that you can see on your
display. It's so named because it functions somewhat like an HTML form—it contains one or more
visual items, such as strings.

Next, the startApp () method creates aregular String object and addsit to the form. It then
gets areference to an object called adisplay, and it sets the form object as the currently displayed
entity of the display.

After all this code executes, you see the screen in Figure 3.4. When you click or press the handset
button that tells the device to hang up, the AMSinvokes destroyApp (), which ssimply
eliminates all references to the form object previoudly created. It's now subject to garbage
collection. The AMS then terminates the MIDlet.

Y ou're responsible for properly disposing of objects created by your MIDIets. In this contrived
case, it shouldn't matter whether or not you set the reference to the form variable to null, because
the MIDlet terminates. But in general, you need to properly manage the references to your
program'’s abjects, just as you would in any Java program.

The MIDlet State Model

MIDlets transition to different states during their lifetime. The MIDP specification defines the
MIDlet state transition model. Table 3.1 lists the possible MIDlet states and their respective
descriptions.

Figure 3.5 shows a state transition diagram that represents these MIDl et states and the events that
cause transition from one state to another. The startApp(), pauseApp(), and destroyApp()

38

methods that you saw in Listing 3.1 allow a MIDlet to change its state. Technically, the device
application management software changes the state of a MIDlet by calling one of these methods
onthe MIDlet. A MIDlet can't change its own state, although it can request a state change from
the AMS.

Figure 3.5. A MIDlet can be in one of three states. When the AMS first creates a
MIDlet, the MIDlet exists in the paused state.

new (|

destrovapp()
Paused

Destroyed

pausedpp() startApp()

destroyhppf |

Table 3.1. MIDlet States

MIDlet State |Description

Name

Paused The MIDlet is not executing. It can't execute again until it transitions to
the active state.

Active The MIDlet is either ready to run or running. The thread that controls the
MiIDlet might not be in the run state, but the MIDlet is still active.

\Destroyed \The MIDlet isn't running and can no longer transition to other states.

The application management software first instantiates your MIDlet class by calling its no-
argument constructor. It then places the instance in the paused state. Before the MIDlet can
execute, the AMS must place the MIDlet in the active state for the first time. It places the MIDl et
in the active state and then callsthe MIDlet's startApp () method.

The application management software places aMIDlet in the paused state by calling its
pauseApp () method. A MIDlet can also petition the AMS for entry into the paused state by
caling itsnotifyPaused() method. A MIDIlet can thereafter request that it be placed in the
active state by calling resumeRequest().

The AMS can signal to the MIDlet that it should clean up and prepare to be terminated by calling
the MIDlet's destroyApp() method. The MIDlet can signal its execution completion to the

39

AMSby calling notifyDestroyed(). Table 3.2 lists the methods in the
jJjavax.microedition.midlet.MIDlet classthat control the MIDlet state.

Table 3.2. MIDlet Class Methods That Control MIDlet State

\MIDIet Class Method Name \Description

protected abstract void The AMS signals the MIDlet to terminate. The

destroyApp(Q) MIDlet enters the destroyed state.

void notifyDestroyed() The MIDlet requests to enter the destroyed state.

void notifyPaused() The MIDlet requests to be inactive and enter the
paused state.

protected abstract void The AMS signals the MIDlet to stop; the MIDlet will

pauseApp() enter the paused state.

void resumeRequest() \The MIDlet requests to re-enter the active state.

protected abstract void The AMS signals the MIDlet that it is active.

startApp()

Notice that the program in Listing 3.1 doesn't call System.exit(). MIDP applications differ
from J2SE applications in the way they terminate. To terminate your MIDlet, you only need to call
the MIDlet's notifyDestroyed() method. This signalsthe AMS that your MIDlet is done
executing. The AMS destroys the MIDlet instance and al of its objects. The VM still executes,
however.

Y ou want the VM to continue executing so other MIDlets can run. A call to System.exit()
signalsthe VM to terminate. This behavior is undesirable in MIDP applications. Y our applications
should not terminate the VM; in fact, they can't. If your application calls System.exit(), a
jJava.lang.SecurityException will aways bethrown. You'll see atrace back that |ooks
something like the following:

Java.lang.SecurityException: MIDP lifecycle does notsupport system
exit.

at java.lang.-Runtime.exit(+9)

at java.lang.System.exit(+7)

at HelloWorld3$MyCommandListener.commandAction(+15)

at javax.microedition. lcdui.Display$DisplayAccessor.

commandAction(+99)
at com.sun.kvem.midp.lcdui.EmulEventHandler$EventLoop. run(+430)

There are two main reasons why a MIDlet should not shut down the VM. First, other applications
may be running; terminating the VM would destroy them. Second, you never start up the VM;
therefore, you should not shut it down. The AMS controlsthe VM. It starts it and terminates it
when it detectsit's not needed, or if it needs to manage system resources.

The MIDP Ul Component Model

The MIDP Ul components are defined in the javax.microedition. Icdui package. This
package name will probably change in afuture release because its name istoo closely tied to a
particular type of physical display device. The MIDP Ul components comprise the majority of
classesin this package. Understanding the organization of these Ul componentsis essential to

building MIDP applications.

40

Listing 3.1 offersthe first demonstration of the use of some of these components. The last two
lines of the startApp() method highlight the crux of the MIDP Ul programming model and
demonstrate how the primary Ul component classes interact:

display = Display.getDisplay(this);
display.setCurrent(form);

Thefirst of the two lines just shown obtains areferenceto aDisplay object. TheDisplay
object is a Java object that represents the physical display of the device's screen. The next line says,
"Make this form the currently displayed entity."

A formisonekind of displayable component that can have avisual representation. A displayable
component in MIDP isatop-level Ul component. Top-level components can be independently
displayed by aMIDlet. That is, they don't need to be contained inside any other component—in
fact, they can't be. A MIDP application can display only one top-level component at any given
time.

For AWT and Swing programmers, a MIDP top-level component is equivalent to a
jJjava.awt.Frame or java.awt.Window in the Swing and AWT toolkits. The MIDP
implementation manages top-level components in the same way that the native window system
manages aWindow in a J2SE platform implementation.

When the AMS launches aMIDlet, it does the following:

e ltinstantiatesthe Display class.
e It associatesthe Display instance with your MID et instance.

Y our program never creates the Display object; the MIDP implementation does. Y our MIDlet
creates only the Ul components—instances of the concrete subclasses of Displayable or Item
that will be displayed on the screen throughout your MIDlet's lifetime. You tell theDisplay
object when to display your displayable components by calling the Display.setCurrent()
method.

Three primary objectsinteract here: your MIDI et instance, the Display instance created by the
AMS, and the Displayable component that you want to appear on the screen. Figure 3.6 shows
aUML diagram of the relationship between these objects.

Figure 3.6. MIDP implementations create only one Display object per MIDlet.
Your MIDlet is an instance of your main class that extends the MIDlet class. It can
create many Displayable objects, however.

41

<<implemeantation classsx>
Display

-midlet <unspecified= = null

+getDisplay() : Display

+gelCurrent() : Displayable

+setCurrent(in alert : Alert = null, in displayable : Displayable)
+satCurrent{in displayable : Displayabla = null)

1 ~display
-MIDlet
=<implementation class>> <<implementation class:>
MiDlet -MIDe -displayable Displayable
sdestroyApp() ! +isShown{) : boolean
+pauseApp()
+startApp()

The important concepts are the following:

e A Display object managesthe physical display.

e ADisplaycandisplay Displayable objects.

e Youmust obtain areferenceto the Display object associated with your MIDlet by the
MIDP implementation.

e Only oneDisplayable object can be displayed at any given time.

An inheritance diagram is a wonderful tool to help one organize one's understanding of a
programming model and the relationships between the classes. Figure 3.7 shows an inheritance
diagram of al the classesin the javax.microedition. Icdui package.

Figure 3.7. The inheritance diagram of the MIDP Ul components shows the
relationships between a MIDlet, its associated Display object, and its
Displayable objects. Unless otherwise qualified, all classes belong to the
Javax.microedition. lcdui package.

42

| java lang.Object

" Screen | 1 Canvas | TexiFiald
DateFiekd Stringltem

[Gauge| [imagettem |

g J: Abstract class

In particular, notice the sibling relationship between the Display and Displayable types; their
purposes are different, hence they share no inheritance relationship. Also notice that aForm,
which our "Hello World" program creates, isakind of Displayable called aScreen.
Conceptually, this organization supports the notion that a Form can take on the role of atop-level
screen.

Screen isaso an abstract class. It encapsulates the nature of al types of top-level screen objects
inthe MIDP. A Form isthe particular concrete subclass of Screen used by the Helloworld
MIDlet.

The Helloworld MIDlet adds a String to its Form. This capability to aggregate objects makes
the Form class akind of container. Although containers are a mainstay of the AWT and Swing
programming models, MIDP doesn't really have such a concept. The Form classisthe only MIDP
type that is able to contain anything else.

Forms can contain only three types of objects: Strings, Images, and 1tems. A Form can't
contain another Displayable of any kind, not even aScreen or another Form. The inheritance
hierarchy of Figure 3.7 verifies this. This means that forms can't be nested. This model greatly
simplifies the structure of MIDP applications compared to AWT or Swing GUIs. To support
nesting would mean that the implementation would have to support the abstraction of visual
representation of the runtime nesting hierarchy to the user. This capability has been intentionally
omitted from MIDP because the resources required to support the related abstractions are too
costly for mobile devices.

Notice in Figure 3.7 that the I tem and Image classes are not under the Displayable hierarchy,

and therefore are not displayable objects. 1tems, Images, and Strings can be added to forms
using the methods from the Form class shown in Table 3.3.

Table 3.3. Form Class Methods for Adding Items to a Form Object

Form Class Method Name Description

public int append(ltem item)

Appends an Item object to this form

‘public int append(String string)

\Appends a String object to this form

‘public int append(Image image)

\Appends an Image object to this form

The Form class implements the abstractions necessary to display String, Image, and 1tem
objects. It is aso responsible for implementing a policy for organizing the objects that have been
added toit. In other words, the Form implementation defines a layout policy.

Nevertheless, MIDP has no concept of layout managers that can be manipulated by the
programmer asin AWT or Swing. The MIDP specification makes recommendations that Form
implementations should follow for doing layout, but it sets no required rules. Implementations will
vary in the way they carry out form layout.

The Item hierarchy defines visual components. Y ou should, however, distinguish between those
components that have a visual representation and displayable components, which are top-level
components. The concrete subclasses of 1tem can be displayed. However, they cannot be
displayed independently like top-level Screen components. Moreover, they can only be
displayed with the help of a Form object and no other type of Screen.

System Properties

The CLDC/MIDP supports system properties, which are key-value pairs that represent
information about the platform and environment in which MIDP applications execute.
Conceptually these are the same type of properties that you find in J2SE. Unfortunately, thereis
no java.util .Properties classin CLDC/MIDP to facilitate your handling of properties.

The MIDP specification defines only asmall set of standard properties, which are shown in Table
3.4. Implementations may support additional, manufacturer-specific system properties, but these
are nonstandard. Y ou should be aware of what manufacturer- or platform-specific features you use
in order to anticipate portability issues.

Like J2SE applications, MIDP applications can retrieve a system property using the
jJava. lang.System class. To retrieve the value of a property, use the System class method

String getProperty(String key)

This method retrieves the property value associated with the key whose value is specified in the
call.

Table 3.4. Standard CLDC System Properties

Property Key Description Default
Value

microedition.configuration|Name and version of the supported CLDC-1.0
configuration

microedition.encoding Default character encoding set used by |ISO8859-1
the platform

microedition.locale Name of the platform's current locale null

microedition.platform Name of the host platform or device null

microedition.profiles Names of all supported profiles null

Listing 3.2 illustrates the retrieval of system propertiesin aMIDlet. The code expands the
examplein Listing 3.1.

Listing 3.2 MIDlets have direct access to all four of the standard system properties
defined by the CLDC specification.

import javax.microedition.lcdui.Display;
import javax.microedition.lcdui.Displayable;
import javax.microedition.lcdui.Form;

import javax.microedition.midlet_.MIDlet;

/**

*/

Creates the "Hello world" program in J2ME MIDP.

Note that the class must be public so that the device
application management software can instantiate it.

public class HelloWorld extends MIDlet

{

public void startApp()

{

// Create a Displayable widget.
form = new Form("'Hello World™);

// Add a string to the form.
String msg = "My Ffirst MIDlet!";
form._append(msg) ;

// This app simply displays the single form created
// above.

display = Display.getDisplay(this);
display.setCurrent(form);

printSystemProperties();

}

/**
Prints the values of the standard system properties
using the System.getProperty() call.

*/

protected void printSystemProperties()

{

String conf;
String profiles;
String platform;
String encoding;
String locale;

conf = System.getProperty("microedition.configuration'™);
System.out.printin(conf);

profiles = System.getProperty(‘'microedition.profiles™);
System.out.printin(profiles);

platform = System.getProperty(‘'microedition.platform™);
System.out.printin(platform);

encoding = System.getProperty("'microedition.encoding™);
System.out.printin(encoding);

locale = System.getProperty(“'microedition.locale™);

System.out.printin(locale);
System.out.printin(Q);

45

}

Notice the addition of the call to the method printSystemProperties() at the end of the
startApp() method. This method simply retrieves and prints to standard output the values of
the five standard MIDP system properties. The data that the program writes to standard output is
shown next:

CLDC-1.0
MIDP-1.0
J2me
1S0-8859-1
en_US

The fourth line of the output just reproduced indicates the character encoding set that the current
CLDC/MIDP platform implementation uses. The last line of the output indicates the current locale.
Locale specifications include two parts: The first part indicates the language setting, while the
second part indicates the country code. The International Standards Organization (ISO) publishes
two standards that define the set of accepted values for language and country codes. Y ou can find
references to these documents in the References appendix at the end of this book.

In the simple example shown in Listing 3.2, | show only how you could retrieve these values. In
subsequent chapters, I'll show examples of how you can use these values for practical applications.

Application Properties

In chapter 2, you learned about the presence of certain MIDIet attributes that are defined in the
JAD file of each MIDlet suite. Recall that all MIDlets have required attributes. Table 2.4 in
chapter 2 listed the required MIDl et attributes that reside in the application descriptor file. A
MIDlet can access the values of these attributes at runtime through the application management
software.

When the AMS installs aMIDlet suite on the device, it placesthe MIDlet JAD file in a specific
location under its control. When aMIDlet is started, the AMS reads the JAD file and builds a data
structure of application attributes. A MIDlet can read the value of an attribute using theMIDlet
class method

String getAppProperty(String key)

The key parameter is the name of the attribute, for example MIDlet-Name. The string returned
is the associated value found in the JAD file.

Listing 3.3 demonstrates how a MIDlet can retrieve attributes. It modifies Listing 3.2 by adding a
call tothe printAppProperties() method at the end of the startApp() method. The new
startApp() method follows:

Listing 3.3 The modified method now also prints the application properties. The
device AMS software manages application properties.

public void startApp(Q)

{
// Create a Displayable widget.

form = new Form("'Hello, World™);

46

// Add a string to the form.
String msg = "My first MIDlet!";
form._append(msg) ;

// This app simply displays the single form created
// above.

display = Display.getDisplay(this);
display.setCurrent(form);

printSystemProperties();
printAppProperties();
}

The method shown in Listing 3.3 prints the values of the standard MIDlet application properties to
standard output. Listing 3.4 showsthe printAppProperties() method.

Listing 3.4 MIDlet attributes, or properties, are different from system properties.
You can define an unlimited number of optional MIDlet attributes in addition to the
predefined, required ones.

/**
Prints application properties using the

MIDlIet.getAppProperty() call.

*/

protected void printAppProperties()

{
System.out.printin(getAppProperty(""MIDlet-Name'™));
System.out.printIn(getAppProperty(*'"MIDlet-Jar-Size'));
System.out.printIn(getAppProperty("*MIDlet-Jar-URL™));
System.out.printin(getAppProperty(""MIDlet-Vendor'™));

}

This latest version of the HelloWorld program now prints the following lines to standard output,
which you should see in your Wireless Toolkit main console window. The
printAppProperties() method printsthe last four lines of output.

CLDC-1.0
MIDP-1.0
Jj2me
1S0-8859-1
en_US

Helloworld

6781
HelloWorld. jar
Vartan Piroumian

The four attributes accessed in Listing 3.4 are standard applications properties available to all
MIDlets. Recall from chapter 2, however, that some additional required MIDlet attributes are
defined in Table 2.4. Also, the MIDP specification defines several optional application attributes;
Table 2.5in chapter 2 lists these optional attributes. Y our applications have access to al of them
through the mechanism demonstrated in Listings 3.3 and 3.4.

Additionally, MIDlets can define optional, application-specific attributes. Y ou can define as many
application-specific properties as you like. Y our application would then access them using the
MIDIet.getAppProperty() method demonstrated in Listings 3.3 and 3.4. This capability isa
kind of configuration or customization mechanism for MIDlets. Y ou'll see some examples of
custom attribute definition and use in chapter 9.

47

Chapter Summary

In this chapter you've learned about the basic organization and structure of MIDP applications.
The center of the MIDP programming model is the MIDlet.

The main components of aMIDlet's structure are the MIDlet instance, aDisplay instance, and
one or more Displayable widgets, which are Ul components.

MIDlet objects are associated with aDisplay object. MIDlets create Displayable widgets,
which are Ul components, and request that they be displayed on the device's screen. The display
manages the device's screen and the visibility of the Ul widgets.

The abstract Screen classisthe first of two main types that categorize @l Displayable objects.
The Screen classisthe central display abstraction. The Form classis a concrete subclass of
Screen. Only one Screen isvisible at any moment in aMIDlet's life.

All MIDlets have associated properties and attributes. Properties are standard system properties
defined by the CLDC specification. They pertain to the platform and are maintained and managed
by the application management system. Attributes are associated with MIDIets. There are required
attributes that are available to all MIDlets, and there are optional attributes. Additionally, there are
application-specific attributes that can be defined by the MIDlet author. Attributes exist in the
application JAD file and are managed by the device AM S software during runtime.

48

Chapter 4. The MIDP High-Level API

Command Processing
Command-Processing Scenario
Screen Navigation

Command Organization

At this point, you know how to organize the Ul of abasic MIDP application. In any MIDIet more
complicated than the first contrived example you saw, you have to define multiple screens. The
application moves from screen to screen in response to user input from the keypad, soft keys, or
function buttons of atypical mobile device.

To build more complex applications, you need to learn how the MIDP accommodates user input
and does event processing. This chapter covers the MIDP's high-level API, which defines the
abstractions that accommodate handling high-level application events.

The high-level APl isthefirst of two APIsfor MIDP Ul components. The other isthe low-level
API, which you'll learn about in chapter 5. The term high-level refersto the API's high level of
granularity that is provided to the programmer in two areas:

e ability to manipulate the look and feel of Ul widgets
e granularity of information about events and event handling

All the Ul components under the Screen class hierarchy implement the high-level API. These
widgets don't give you the ability to change their look-and-feel. Asfor events, the information
available to the application is at ahigh level of abstraction. Applications don't have accessto
concrete input devices. For example, using the Screen abstraction, applications don't have access
to information about what physical keys the user presses.

The high-level API is designed for business applications that must be portable across many
devices. Therefore, the MIDP implementation abstracts the details of things like the
implementation to hardware.

Command Processing

The MIDP high-level API supports event processing through the use of commands. A command
represents a user action—for instance, something the user does on screen such as pressing a
function button. An event is the occurrence of an action. Events can represent the invocation of a
command in response to a user action.

A command captures the semantic information or representation of a user action or event. It does
not, however, define the behavior that results from the action or event. The application defines the
processing—the behavior, if you will—that results from the occurrence of some command.

The Command classin the javax.microedition. lcdui package describes commands. This
class encapsul ates three pieces of information:

o label

e priority
e command type

49

Thelabel isaString suitable for display such that it can represent to the user the semantics of
the command. The priority isan int that indicates the importance of a command relative to other
commands. The command type is an internal representation of the intended use of the command.
The current specification defines the command types listed in Table 4.1.

Table 4.1. Command Types

Command Type |Description

Constant

public static |Return to the logically previous screen

int BACK

public static |A standard negative answer to a dialog query

int CANCEL

public static |Indication to exit the application

int EXIT

public static |A request for on-line help

int HELP

public static The application hints to the implementation that the command
int ITEM relates to a specific item on the screen, possibly the currently

selected item

public static

A standard positive answer to a dialog query

int OK

public static |An application-defined command related to the currently displayed
int SCREEN screen

public static |Stop some currently executing operation

int STOP

Command-Processing Scenario

The scenario for command processing in the MIDP is conceptually similar to other GUI toolkits.
A command listener is an object that receives notifications of the occurrence of commands.
Command listeners register to receive notification of commands.

Some external action, such as the user press of a button, resultsin the MIDP implementation

detecting the event and associating it with the currently displayed screen. It encapsulates the event
in aCommand object. A registered command listener receives notification of the event. The
listener then takes some action that represents the behavior of the command.

Commands can only be associated with Displayable widgets. That is, you can add or remove
Command objectsto and from aDisplayable object using the following methods in the
Displayable class:

public void addCommand(Command cmd)
public void removeCommand(Command cmd)

A command listener object must register with aDisplayable to receive command notifications
by calling the following method onthe Displayable object:

void setCommandListener(CommandListener cl)

Only one command listener is allowed per Displayable. The MIDP implementation delivers
commands only to the current Displayable. Thisrestriction has to do with the realistic

50

expectations of performance of current MIDP implementations. The MIDP defines asingle-
threaded model for event processing. Supporting multiple command listeners would require a
multithreaded event-processing model.

Figure 4.1 shows a UML diagram of the relationship between the Displayable and Command
classes and the CommandL istener interface. Note that the diagram is not a comprehensive

UML representation of every member, attribute, and so forth, of the types. Figure 4.2 shows the
object instance diagram, which represents the interaction of instances of these classes in a running
application.

Figure 4.1. This UML diagram shows the relationship between several of the key
classes that are responsible for the creation, detection, and delivery of command
events to your application.

<<implemeantation class>>
Display

-midlet <unspecified> = null

+gelDisplay() : Display

+gelCurrent() : Displayable

+satCurrent(in alert : <=unspecified= = null, in displayable : Displayable)
+setCurrent(in displayable : Displayable = null, in Parameter1)

1.1 -Current displayable

1.1 -Display
<<implementation class>>
<<implementation class>> Command
Displayable -Command -name : String
) -lype :int
-Displayakle AP
+isShown() : boolean -priority : int
1 -Command Listenar

1 -Command source

=<typass
CommandListenar

+commandAction(in ¢ : Command, in d : Displayable ; void

Figure 4.2. This object diagram indicates that many displayable objects can exist
in arunning application, and more than one can register the same listener. A
Displayable can have only one command listener, however.

51

Command
listenar

ay
S

Unlike the Swing toolkit, the MIDP has no general event listener model. The high-level API has
only one type of command listener, called, not surprisingly,
Javax.microedition. lcdui.CommandListener.

Display

Displayahle
Displayable

Displayable

MIDlet

Command
listener

Listing 4.1 shows the second version of the Helloworld MIDlet. It adds a soft button to its main
screen and installs acommand listener to listen for the occurrence of the user pressing the soft
button. The MIDIet responds by displaying another kind of screen called an alert, which isthe
MIDP equivalent of a pop-up dialog box.

Listing 4.1 The HelloWorld2 program adds command processing.

import javax.microedition.midlet_MIDlet;

import javax.microedition.lcdui.Alert;
import javax.microedition.lcdui.AlertType;
import javax.microedition.lcdui.Command;
import javax.microedition.lcdui.CommandListener;
import javax.microedition.lcdui.Display;
import javax.microedition.lcdui.Displayable;
import javax.microedition.lcdui.Form;
/**
The second version of the HelloWorld application.

This version adds a command to a Displayable component
and sets a command listener to listen for command
activation and take some action in response to it.
This example demonstrates how the Displayable defines
the semantics of the command execution.

*/

public class HelloWorld2 extends MIDlet

{

52

// The Display. This object manages all Displayable
// components.
private Display display;

// The Displayable. This component is displayed on
// the screen.
private Form form;

private final String ALERT_LABEL = "Alert Me!";
private Alert alert;

// Two commands added to this MIDlet"s displayable.
private Command showAlert;
private Command sayHi;

// The instance of the inner class that defines the
// CommandListener for this MIDlet.
private MyCommandListener cl = new MyCommandListener();

public HelloWorld2()

{
super();

public void destroyApp(boolean destroy)

{
form = null;
notifyDestroyed();
}
public void pauseApp()
{
}
public void startApp()
{

form = new Form("'Hello World™);

String msg = "My second MIDlet!";
form.append(msg) ;

form.setCommandListener(cl);

showAlert = new Command(ALERT_ LABEL,
Command . SCREEN,
1);

form.addCommand(showAlert);

sayHi = new Command(*'Say Hi'", Command.SCREEN, 1);
form.addCommand(sayHi);

display = Display.getDisplay(this);
display.setCurrent(form);
}

private class MyCommandListener
implements CommandListener

{

public void commandAction(Command c, Displayable d)

{

53

alert = new Alert('Button pressed",

"The "' + ALERT_ LABEL +

""" button was pressed",

null,

AlertType.INFO);
alert.setTimeout(Alert._FOREVER);
display.setCurrent(alert, form);

}

}
}

| created the foregoing Helloworld2 MIDIlet using my favorite text editor. | then placed the source
file under the control of my J2ME Wireless Toolkit installation:

$ pwd

/cygdrive/c/J2mewtk/apps/Hel loWorld/src
$ Is

HelloWorld.java HelloWorld2.java

$

The 22ME Wireless Toolkit compilesall . java filesin adirectory. Compiling the HelloWorld
project compiles both versions of HelloWorld. Figure 4.3 shows the emulator start screen that
appears when | open the HelloWorld project. Notice that now you see two MIDlets listed. Using
the arrow keys, select HellowWorld2 and run it by pressing the Launch soft button.

Figure 4.3. Adding a new MIDlet to a suite results in the AMS displaying a menu
from which you choose the application you want to run.

Figure 4.4 shows the main screen of Helloworld2. Notice that now a soft button entitled "Alert
Me" appears on the right. There's not enough room on this device to show the full text "Alert Me!™
that appears in the source code—so the exclamation point is missing.

Figure 4.4. The main screen of the Hel loWor 1d2 MIDlet.

55

hily second MICiet!

Thisisthefirst portability issue you've seen, and it's a practical one. Fortunately, the emulator
supports four different devices. Y ou can execute your MIDlets using any of the four device
emulators supported by the 2ME Wireless Toolkit Emulator to see how they ook with each one.
In thisway you can address many potential portability problems.

Figure 4.5 shows the HelloWorld2 main screen as it appears using the simulated Motorolai85s
device. Notice that, unlike the default phone, it's capable of displaying the full command text on
the soft button. There's also a second Command with the label "Say Hi," which appears on the soft
button on the left side.

Figure 4.5. A screen capture of the Hel loWor 1d2 MiIDlet first screen with a soft
button added as it is displayed by the Motorola i85s emulator.

56

Emulation Only

Tl
Hello World

by ==Comel MIDIEL

Pressing the "Alert Me!" soft button displays the alert screen shown in Figure 4.6. The action of
displaying this screen is the behavior that Helloworld2 defined for the command associated with
the soft button selection.

Figure 4.6. Pressing the "Alert Me!" soft button displays this alert. Alerts are a type
of displayable screen.

57

Button pressed

The "Ll=r Mel' button
WyES pressed

Looking at the HelloWorld2 source code, you see that, except for afew variable declarations, the
logic that creates this command processing capability islocated in the startApp() method. The
application creates aCommandL i stener instance. HelloWorld2 defines an inner class,
MyCommandL i stener, to handle the listener duties. It implements the CommandListener
interface.

Y ou don't have to do it thisway. Y ou could, for example, subclass the Form class and have it
implement CommandListener. Your subclassisaForm, whichisakind of Screen, anditis
therefore able to receive command invocation notifications.

Defining CommandListener as an interface enables the use of this second approach. Every type

of Screen aready has a parent class, and therefore cannot inherit from a second parent. The use
of Javainterfacesis particularly useful here.

58

After instantiating MyCommandL i stener, the instance is registered on the Form. Next, the
application creates a Command object whosetitle isthe "Alert Me!" label you saw in the emulator.
This command is then added to the form. When the user pressesthe "Alert Me!" soft button on the
running MIDIet, the implementation "sends" the natification to the listener, the instance of
MyCommandL i stener, by invoking its commandAction() method. The commandAction()
method then creates the Al ert object and displays it.

There are afew important conceptual points about this example. Notice that | created the
Command but didn't associate it with any specific keypad key, button, or soft button on the device.
In fact, when using the high-level API, your application has no way of obtaining information
about what physical key is pressed. The implementation assigns the Command to a specific key—
in this case the soft button on the right side of the device display.

Activate the "Say Hi" soft button located on the |eft hand side in the HelloWorld2 MIDlet, and
you'll seethat it resultsin the same behavior asif you had pressed the "Alert Me!" button; the
same Alert isdisplayed. Of course, this behavior iswrong, because the Alert indicates that the
"Alert Me!" button was activated.

Because of the high-level API's abstraction of the association between keys and commands, you
cannot assign a listener to a specific key. Because there can be more than one command per screen,
you must use another technique to enable your command listener to identify the source of the
command and to ensure that the intended actions execute in response to events.

The listener is registered with, and receives notification from, the Displayable, not from the
source of the event (such as the keypad button). A listener must therefore identify and "select” the
command in which it'sinterested, from among all the possible Commands associated with the
current screen.

Y ou, the programmer, must ensure that you properly associate the behavior of any listeners with
the correct Commands. Y ou must use the information available in the Command object to
explicitly identify the Command.

To correct the bug in the last version of the program, | rewrite the commandAction() method in
the MyCommandL i stener classasfollowsin Listing 4.2.

Listing 4.2 The command listener now distinguishes between commands by
examining their labels.

public void commandAction(Command c, Displayable d)
{
iT (c == showAlert)
{
alert = new Alert("'Button pressed",
"The "' + ALERT_LABEL +
""" button was pressed",
null,
AlertType.INFO);

else if (c == sayHi)

{
alert = new Alert(""Button pressed",
"The " +
"""Say Hi" button was pressed",
null,
AlertType.INFO);
}

59

alert.setTimeout(Alert.FOREVER);
display.setCurrent(alert, form);

}

Thereisstill only one CommandListener for the Screen—there can be only one. Its
commandAction() method is called in response to either button press. But now it checks the
Command object context of the notification and displays a different aert accordingly.

Screen Navigation

The Helloworld2 example demonstrates the central abstraction of the MIDP, the Screen. You've
undoubtedly noticed aready that you can only display one Displayable—one Screen—at a
time. When the application needed to display the Alert, it had to replace the main screen.

The reason for this single-screen abstraction is the limitation of device screen resources. Unlike
desktop GUI toolkits, such as J2SE's Swing toolkit, you don't have the luxury of layered windows,
pop-ups, dialog boxes, and so forth. Although not impossible to implement these abstractions, the
memory and CPU reguirements are prohibitive for today's mobile devices. Furthermore, the low-
resolution, low-powered, small-area LCD displays characteristic of most mobile devicesis not
well suited to these abstractions. Even PDA displays have marginally acceptable characteristics
for layered windows, pop-ups, and so forth. However, quite possibly within one year from now
these devices will have significantly more capability, on the order of a50 MHz CPU and
32Mbytes of RAM.

There is a simple screen navigation idiom that goes along with this screen display abstraction.
When you want to display a new screen, simply set that screen to be the current displayable. To
do this, you request your MIDlet's Display object to display the Screen. Remember that in
chapter 2 you learned that each MIDlet is assigned a unique Disp lay object by the MIDP
implementation upon startup. Y ou never create the Display object, but you can obtain a
reference to it by making the following call with areference to your MIDlet as the argument:

Display.getDisplay(midlet);

Next, you simply make the method call shown next, with the argument that references the
Displayable you want to display:

display.setCurrent(nextDisplayable)

Y ou can find these two lines of code in the startApp () method of both versions of the
HellowWorld application.

Designing the navigation and flow of your MIDlet involves the following steps:

1. Design the screens.
2. Create the commands that you need for each screen.
3. Assign commands to screens.

For each command of each screen, determine the next screen to display subsequent to the
execution of each command.

An important attribute of successful MIDP applicationsis clear, intuitive navigation between
screens. User task analysisis the topic of awhole book in itself and beyond the scope of this book.

60

The most important concept, however, is to think from the user's perspective. Keep it simple.
Don't confuse your users by jumping around so the user can't follow the navigation. It's too easy
for auser to get lost when viewing a small screen, without the larger context of where he or sheis
in relation to the overall application. And never design your screens to accommodate the internal
organization of your application, its data structures, classes, and so forth. On the contrary, let the
design of your application follow the screen layout, design, navigation, sequencing, and so forth.

Command Organization

Looking more closely at the example in the previous section, you might surmise that you really
have no control over where the Command labels appear on the soft buttons either. After al, | didn't
specify left or right soft button for the placement of either Command. The HelloWorld2
application added an "Alert Me!" and a"Say Hi" button, in that order. The first appeared on the
right soft key, the second on the left.

In fact, the implementation controls the placement of Command labelson your Displayable
objects according to some implementation-dependent policy. Y ou can see the different policies by
playing with the various emulators in the wireless toolkit. Y ou can see that the Motorola emulator
places buttons differently than the default gray phone and default color phone emulators.

The next version of our HellowWorld program, HelloWorld3, adds a third command to the main
screen. Instead of listing the whole MIDlet again, I'll just show the parts that change from the
previous example.

In the class scope, HelloWorld3 defines three Command objects:

/**
The third version of the HelloWorld application.

This version builds upon HelloWorld2 by adding several
commands to a Displayable component. The demonstration
here is that the CommandListener must determine which
command was activated on the Screen.

Also, you can see how the implementation orders commands
on the soft buttons and how it creates a menu and orders
the commands on the menu according to command type.

*/

public class HelloWorld3 extends MIDlet

{

Command showAlert= new Command(*Alert Me!", Command.SCREEN, 1);;
Command sayHi = new Command(*'Say Hi', Command.SCREEN, 1);;
Command cancel = new Command(*'Cancel', Command.CANCEL, 1);

public HelloWorld3()

{
super();

}

In the startApp() method, these Command objects are added to the main screen as follows:

61

form.addCommand(showAlert);
form.addCommand(sayHi);
form._.addCommand(cancel);

Building and running this new version in the 2ME Wireless Toolkit Emulator yields the main
screen shown in Figure 4.7.

Figure 4.7. The implementation adds the "Menu" soft button when it detects more
than two commands added to the current Displayable.

First, noticein Figure 4.7 that you see alabel "Menu" on the right soft button when you run this
latest MIDlet using the default gray phone emulator. There's certainly no notion of a menu
anywhere in the program code.

The devices have only two soft buttons, but we added three commands to our main screen. The

implementation detects this and creates a menu that holds the second, and third commands, and so
on. Figure 4.8 shows the display after you select the "Menu" button.

62

Figure 4.8. Selecting the "Menu" button displays a list of the items on the screen's
menu.

Famlil
Menu

alAlert Me!

2 Sav Hi

Run this latest version unmodified using the Motorolai85s emulator, and you'll see that the
"Menu" key appears on the left soft button as reflected in Figure 4.9. In fact, Figures 4.8 and 4.9
demonstrate that the exact behavior and policy for menu placement is implementati on-dependent.

Figure 4.9. The placement of labels—commands—is implementation-dependent.

63

Hello World
Pale ik st WDt

Command Ordering

Y ou might be wondering why the "Cancel” command was placed on the soft button even though it
was added last to the screen. Intuitively, you might think that it should be added last on the menu.
Y ou might think that, surely, the "Alert Me!" button, which was added first, should be on the soft
button.

The explanation for this apparent anomaly is that commands are organized according to their type.
Remember from our earlier discussion in this chapter that one of the three pieces of information
that define aCommand isitstype. The Command class defines constants that represent the valid
types. Y ou saw these constants listed in Table 4.1.

Now, I'll add the following Command objects to the Helloworld3 example. At the class level, |
define the following new commands:

64

public class HelloWorld3 extends MIDlet

{
private Command exit =
new Command("Exit", Command.EXIT, 2);
private Command help =
new Command(‘'Help', Command.HELP, 3);
private Command item =
new Command(*'ltem'”, Command.ITEM, 4);
private Command ok =
new Command("'OK"™, Command.OK, 5);
private Command screen =
new Command(*'Screen', Command.SCREEN, 6);
private Command stop =
new Command(‘'Stop', Command.STOP, 7);
}

Notice that each of the commands has a different type. These differences will enable you to see
how the implementation places commands on a screen according to their type.

In the startApp() method, | add these new command objects to the main screen. The new
version of startApp() lookslikethis:

public void startApp(Q

{
// Create a Displayable widget.
form = new Form("'Hello World™);

// Add a string widget to the form.
String msg = "My Ffirst MIDlet!";
form.append(msg) ;

// Add a MyCommandListener to the Form to listen for
// the "Back" key press event, which should make an
// Alert dialog pop up-

form.setCommandListener(cl);

form.addCommand(showAlert);
form.addCommand(sayHi) ;
form.addCommand(cancel);

form.addCommand(exit);
form.addCommand(help);
form._.addCommand(item);
form.addCommand(ok) ;
form.addCommand(screen);
form.addCommand(stop) ;

// This app simply displays the single form created
// above.

65

display = Display.getDisplay(this);
display.setCurrent(form);
}

When you run the new version, the first thing you should notice is that the "Cancel” command is

replaced by the "Exit" command on one of the soft keys, as shown in Figure 4.10. Activating the
Menu shows that the "Cancel" key isindeed still there, but now it's on the menu.

Figure 4.10. The MIDP implementation determines the policy for placing commands
according to their type.

d Alert el
5 Say Hi

The placement of commands occurs according to their types. The exact policy, however, is
implementation dependent.

Command Semantics

66

Look again at the "Exit" command. The Command object is defined with alabel that says "Exit."
But this doesn't make it an "exit" command! | specified its type to be Command .EXIT in the

constructor call. This specification of its type attribute makes it an "Exit" command. If | made its
type, say, Command . SCREEN, it would not appear on the soft key. Y ou can try this for yourself.

The implementation chooses a command placement policy that attempts to maximize the usability
of the device. Presumably, it's a good idea to make the "Exit" key readily available because that's a
key that's used to navigate between screens. This concept underscores the point made earlier that
user-friendly screen navigation is at its most important on devices with small screens and more
constrained user input mechanisms.

Finally, afew words should be said about command priority. Note that the organization of
commands—that is, placement according to their type, is very different from prioritization of
event delivery. The placement scheme has nothing to do with the Command priority attribute, one
of the three attributes of Command objects. The command priority dictates the priority that the
implementation gives to commands when ordering their delivery to the listener.

| defined different priorities for each command in the HellowWorld3 example. Y ou can convince
yourself that the priority has no effect on the command placement. If you experiment with the
menu a bit, you'll be able to figure out the command placement policy of the implementation for
each device supported by the emulator. Y ou can also modify the command priorities in the source
code and see how it affects their placement.

In reality, the prioritization of commands is not that important when you're dealing with the MIDP
high-level API. Nevertheless, it'simportant to be aware of the concept. Typically, the user will be
ableto do only onething at atime, so there will be no "race" to deliver higher-priority eventsto
the application.

Chapter Summary

In this chapter you learned about the MIDP high-level API. The high-level API abstracts details
about the implementation of the following:

e rendering Ul widgets
e event processing

MIDlets that use the high-level API cannot change the look and feel of widgets. And they cannot
get information about the actual device keys or buttons pressed that cause acommand to fire.

Commands capture only semantic information about an "event." The command doesn't represent
the behavior or action that occurs in response to an event, however. Command listeners define the
behavior of commands by defining the processing that takes place as a result of acommand firing
by the implementation.

The exact policy for the placement of command labels on the screen isimplementation dependent.
The MIDP specifies that the placement of commands on a menu be done according to the
command type.

Command priority dictates the order in which commands are fired and sent to the command
listener.

67

Chapter 5. The MIDP Ul Components

MIDP Ul Component Hierarchy
Screens and Screen Elements
Screen Navigation

More [tem Components

Now that you've learned the basic abstractions defined by the MIDP high-level AP, it'stimeto
learn how to use the Ul components that are built upon those abstractions. This chapter shows you
the basics of how to use the MIDP Ul components that implement the MIDP high-level API. It's
not intended to be a comprehensive treatment of every feature of every Ul widget. That
responsibility isleft to the Javadoc reference documentation or reference manuals. Neverthel ess,
once you have a basic understanding of the purpose of each of the widgets and how they work
fundamentally, you can easily learn the detailed features of each widget on your own.

MIDP Ul Component Hierarchy

The MIDP inheritance hierarchy diagram in Figure 5.1 reproduces the one you first saw in Figure
3.7 in chapter 3. Y ou've aready seen several of the MIDP Ul components in this hierarchy,
namely Displayable, Screen, Form, and Alert.

Figure 5.1. MIDP Ul components belong to either the class of Displayable
objects or to the class of 1tem objects, with the exception of the Ticker class,
which derives from Object.

¢ Screen ; : Canvas [ChoiceGroup| TextFioid
Stringhtem
| Alert | [Gauge| [magetiem]
| Form |
""""" i Abstract class

:I Concrete class

Y ou know that the Disp layab I e class defines the fundamental nature of any component that
can be displayed, and that the Screen class defines the fundamental abstraction of the MIDP
Ul—the screen. The Screen classisthefirst Displayable you saw, and Form was the first
concrete type of screen used.

68

Table 5.1 briefly describes al of the MIDP Ul componentsin the
Javax.microedition. lcdui package.

Table 5.1. Description of All MIDP Ul Components

MIDP Ul Component MIDP API

Class Name Description Membership

Alert Informational pop-up that can be modal or High-level
timed

AlertType Defines types of Alert objects High-level

Canvas A screen on which you can draw graphics Low-level
and receive low-level key/pen events

ChoiceGroup A group of selectable items; resides on a High-level
Form

Command Semantic encapsulation of Ul events Both high- and

low-level

DateField A component that displays date and time High-level

Display Class that abstracts device display data High-level
structures

Displayable Ancestor of all components that can be Both high- and
displayed low-level

Font Class representing display fonts for screen |High-level
text

Form A screen that aggregates items for display |High-level

Gauge A type of visual gauge High-level

Graphics Representation of native device graphics Low-level
context

Image Representation of a Portable Network Both high- and
Graphics (PNG) format image low-level

Imageltem A Form resident representation of an image |High-level

List A list of selectable items High-level

Screen The abstract ancestor of all types of screens |High-level

Stringltenm Form resident representation of a string High-level

[TextBox Multiline, multicolumn text container High-level

[TextField 'Single-line text container High-level

Ticker Representation of a ticker tape High-level

Screens and Screen Elements

Thefirst example in this chapter shows you the fundamental difference between the two types of
MIDP Ul components. Displayable components and 1 tem components. The inheritance
hierarchy of Figure 5.1 clearly delineates these two categories. The Displayable hierarchy
encompasses screens, which you display. The 1tem hierarchy classifies elements that can be
aggregated within a screen. The ensuing examples demonstrate the use of the various MIDP Ul
components. We explain their use as we introduce each one.

Listing 5.1 shows the file named UlComponentDemo.java, which defines the source code of a
new program that demonstrates the use of the MIDP widgets. Thisfile uses code in other files that
together comprise the complete Ul component demo.

69

Listing 5.1 The UlComponentDemo source code

import javax.microedition.midlet.MIDlet;

import javax.microedition.lcdui.Choice;

import javax.microedition.lcdui.Command;

import javax.microedition.lcdui.CommandListener;
import javax.microedition.lcdui.Display;

import javax.microedition.lcdui.Displayable;
import javax.microedition.lcdui.List;

/**
Demonstrates the use of the MIDP Ul high-level
components. This demo class builds a list of demos for
the user to select. The items in the list are actually
the names of the primary classes for the demos. The
MIDlIet instantiates the class represented by the list
Element selected by the user and then executes it.

*/

public class UlComponentDemo extends MIDlet
implements CommandListener

{

private Command exit =

new Command("Exit", Command.EXIT, 1);
// The names of the various demo programs. The items in
// this list are the names of the primary classes for
// each demo.
private static String [] demos =
{

"AlertDemo",

"DateFieldDemo™,

""GaugeDemo'',

"StringltemDemo™,

"TickerDemo",

""ImageltemDemo"

};
private static UlComponentDemo instance = null;

// The actual List component that displays the items in
// the "demos™ list above.
private List mainMenu = new List("'Select demo",
Choice. IMPLICIT,
demos, null);

/**

No-arg constructor.
*/
public UlComponentDemo()
{

// Notice the call to super(). This executes the
// no-arg constructor in the MIDlet class.
superQ);

instance = this;

}

/**
Returns the single instance of this class. Calling
this method before constructing an object will return
a null pointer.

70

@return an instance of this class.
*/
public static UlComponentDemo getlnstance()

{

return instance;

}

public void startApp()

{
Display display;

mainMenu.addCommand(exit);
mainMenu.setCommandListener(this);

display = Display.getDisplay(this);
display.setCurrent(mainMenu);

}

public void pauseApp(Q)
{

}
void quit()

destroyApp(true);
notifyDestroyed();

}

public void destroyApp(boolean destroy)
{

}

public void display(Q

{
Display.getDisplay(this).setCurrent(mainMenu);

public void commandAction(Command c, Displayable d)
Displayable displayable = null;

it (c == List.SELECT_COMMAND)
{

int index = mainMenu.getSelectedIndex();

try

{
displayable = (Displayable)
Class.forName(demos[index]) .newlnstance();
if (displayable == null)
{

return;

}

Display display = Display.getDisplay(this);
display.setCurrent(displayable);

catch (Exception e)

{

71

System.out.printIn(''Got exception herelll');
e.printStackTrace();
return;

}

else if (c == exit)
{
quitQ);

}
}

Thecodein Listing 5.1 is the first example because it builds upon the use of akind of screen
object. The screen is at the heart of the organizational foundation of all MIDlets.

Listing 5.1 definesaMIDlIet. Its top-level screenisal ist component that displays alist of
choices representing the different widgets that the program demonstrates. Figure 5.2 shows the
top-level list of the demo applications you can run. Thismain screen isan instance of List.

Figure 5.2. View of the UIComponentDemo main screen. The items are the names
of the main classes for each demo.

72

i
—

Drat eFigldlemo
Caugelemo
StringtembCemo
TickerDemo

Notice the downward-pointing arrow on the screen. It indicates that more elements exist for which
there is not enough room on the screen. If you scroll down far enough, the downward-pointing
arrow disappears, and an upward-pointing arrow appears instead. These arrows are placed on the
screen by the Li st component implementation.

A Listisakind of Screen, which, of course, isaDisplayable, and it fitsinto afamiliar
overall application structure. You can seein Listing 5.1 that the List instance is the current
displayable; as such, it's the object that receives command invocation events. The MIDlet itself is
the listener for those events, registering itself to be the CommandListener for those events. It
implements the CommandL i stener interface and also defines acommandAction() method.

An alternate way to define listenersis to make the component itself alistener for events that occur
on it. To accomplish this, however, you would have to subclass the component class, in this case
creating a subclass of List. | choose the former approach and use the standard List class
without subclassing.

73

Figure 5.2 displays alist of Ul component demo programs. The names you see are the names of
the main classes for each demo. Selecting one executes that demo. Of course, you must first
compile the demo programs before attempting to run them. Otherwise, you'll get a
ClassNotFoundException error.

If you're using the 2ME Wireless Toolkit, you only need to place your source filesin the
UlComponents/src/ directory of the project. Then, build the project. The Wireless Toolkit
will compile all sourcefilesin the src/ directory. It will run the preverifier and finally place
the . class filesin the project's classes/ directory. At that point, you can execute the demos
listed on the main MIDlet screen.

In the next example, I'll first compile and make available the AlertDemo program, the first item
in the list. To run the compiled demo, simply select AlertDemo from the list shown in Figure 5.2.
Repeat these build and execute steps for each of the other demos.

Figure 5.3 shows the screen that displays when you select the AlertDemo item in the top-level list
of demos. This screen displays another set of elements—a set of alert types—using another MIDP
component called ChoiceGroup. The screen containing the alert types is created by the code in
the AlertDemo.javafile, shown in Listing 5.2. Selecting one of the items on this screen creates and
displays an instance of that type of Alert component.

Figure 5.3. The main screen of the alert demo is a form that aggregates a
ChoiceGroup and a TextField.

74

YL m
[Confirmation

[iErrar
[information

Back & =0

The inheritance hierarchy of Figure 5.1 revealsthat ChoiceGroup isneither aScreen nor even
aDisplayable. Itisakind of 1tem. Recal from chapter 3 that an Item is acomponent that
can be aggregated by a Form. Notice that the AlertDemo class extends Form, which givesit the
capability to aggregate aChoiceGroup and aTextField item.

In Figure 5.3 you see a Form—the AlertDemo instance—which contains the ChoiceGroup and
TextField objects. Recall that aForm isthe only MIDP component that can aggregate other
components. Thus, the AlertDemo program must use a Form to hold the ChoiceGroup and
TextField items.

Listing 5.2 Alerts are screens, but they cannot contain Command objects. You must
specify the Displayable that is to be shown when the alert is dismissed.

import javax.microedition.lcdui.Alert;
import javax.microedition.lcdui.Choice;
import javax.microedition.lcdui.ChoiceGroup;
import javax.microedition.lcdui.Command;

75

import javax.microedition. lcdui.CommandListener;
import javax.microedition.lcdui.Display;

import javax.microedition.lcdui._Displayable;
import javax.microedition.lcdui.Form;

import javax.microedition.lcdui.TextField;

/**
Demonstrates the use of Alert objects.
*/
public class AlertDemo extends Form
implements CommandListener
{
private Command go =
new Command(*'Go", Command.SCREEN, 1);

private Command back =
new Command(‘'Back', Command.BACK, 1);

private ChoiceGroup type;
private TextField tPref;

private String [] elements =

“"Alarm',
"Confirmation",
“Error',
“"Information",
"Warning

¥

// Need this so other screens can refer to the instance
// of this class.
private static Displayable instance;

/**
Constructor.
*/
public AlertDemo()

{
super("'Build alert™);

type = buildAlertTypeSelection();
tPref = buildTimeoutPrefPrompt();
append(type);
append(tPref);

addCommand(go) ;
addCommand(back) ;
setCommandListener(this);

instance = this;

/**
Returns the single instance of this class. Calling
this method before constructing an object will return
a null pointer.

@return an instance of this class.

*/
static Displayable getlnstance()

76

{

}
private ChoiceGroup buildAlertTypeSelection()

{

return instance;

// Doesn"t work if this is Choice.IMPLICIT. See the
// Choice documentation. The type IMPLICIT is valid
// for List objects only.
return new ChoiceGroup(*'Alert Type",
Choice.EXCLUSIVE,
elements,
null);
}

private TextField buildTimeoutPrefPrompt()
{
String MAX_TIMEOUT_VALUE = "5";
int MAX_SIZE = 8;

return new TextField("'Timeout (sec.)",
MAX_TIMEOUT_VALUE,
MAX_SIZE,
TextField .NUMERIC);
}

public void commandAction(Command c, Displayable d)
{
UlComponentDemo demo = UlComponentDemo.getlnstance();
Display display = Display.getDisplay(demo);
int timeSec;
int timeMillis;

if (c == go)
{

// Alerts don"t accept application defined
// Commands.
String title = elements[type.getSelectedindex()];
Alert alert = new Alert(title);
alert_setString("A """ + title + """ alert™);
timeSec = Integer.parselnt(tPref.getString());
timeMillis = timeSec * 1000;
if (timeMillis <= 0)
{

timeMillis = Alert_FOREVER;

alert.setTimeout(timeMillis);
display.setCurrent(alert, AlertDemo.getlnstance());
}

if (c == back)

UlComponentDemo.getlinstance() .display();
}
}
}

Asyou play with this application, notice that you can scroll the Li st up and down, highlighting
different elements of the Li st, but no programmatic selection event occurs. Similarly, on the
Build Alert screen, you can scroll and repeatedly select the elements of the ChoiceGroup
without activating any action.

77

In both of these cases, no event is generated until you cause the activation of acommand. On the
List screen, you must click the device's Select button to go to the Build Alert screen. Once at the
Build Alert screen, you must select the Go soft button to see the Alert displayed. Changing
selection on any Choi ce implementation doesn't activate any Command on the component.

Both of the screensin Figures 5.2 and 5.3 show sets of elements from which the user makes a
selection. Both the List and ChoiceGroup components implement the
jJjavax.microedition. Idcui .Choice interface, which specifies behavior characteristic of
components that support selection of one or more of their elements. The Choi ce interface defines
three constants:

e IMPLICIT: The currently focused element is selected.
e EXCLUSIVE: A single element can be selected.
e MULTIPLE: Multiple elements can be selected.

Only List objects can define IMPLICIT activation. When you activate the device Select key on
animplicit List, whatever List element is highlighted at that time becomes the selection.
Listing 5.1 demonstrates this implicit command. A ChoiceGroup cannot beimplicit. The
ChoiceGroup congtructor throwsan 11 1egalArgumentException if you try to instantiate it
with atype of Choice. IMPLICIT.

There is one more piece of information to be gleaned from thisimplicit List. Earlier, | said that a
command event is sent to the Displayable in response to the user clicking the device's Select
button. The type of this command, however, is different from any of the types that the Command
class defines.

The List class defines a special Command object, List.SELECT_COMMAND. Activating an
IMPLICIT list generates this special command and deliversit to the command listener without the
user explicitly doing any select operation. The very purpose of this command is to enable the
listener's commandAction() method to recognize the activation of the device's select operation.
Listing 5.3 shows how the Ul ComponentDemo . commandAction() method uses this specia
constant.

Listing 5.3 The command listener must check for the activation of the special
List.SELECT_COMMAND if the application uses implicit lists.

public class UlComponentDemo extends MIDlet
implements CommandListener
{

éﬂblic void commandAction(Command c, Displayable d)

{
Displayable displayable = null;

if (c == List.SELECT_COMMAND)

{

int index = mainMenu.getSelectedIndex();

try

{
displayable = (Displayable)
Class.forName(demos[index]) -newlnstance();
Display display = Display.getDisplay(this);
display.setCurrent(displayable);

}

catch (Exception e)

78

{
e.printStackTrace();

return;

}
}

else

{

return;

}
}

The EXCLUSIVE and MULTIPLE selection types are self-explanatory. MIDP implementations
render the selection indication icons differently for exclusive and multiple lists. Exclusive
selection lists have a circle to the left of the element text, similar to radio buttonsin AWT and
Swing applications, and an interior dot indicates the selected element. Multiple selection lists
render the component with a sguare to the left of the element text, similar to check boxesin AWT
and Swing applications.

Y ou've aready seen an example of an Alert in chapter 3, and here you seeit again. The
commandAction() method of the AlertDemo class creates five different alerts based on the
data that the user inputs in the Build Alert screen of Figure 5.3.

The Alert class constructor takes an argument of AlertType, which indicates the type of alert
variant to create. The AlertType class defines five constants that represent the possible types of
alerts, shown in Table 5.2.

Table 5.2. AlertType Class Constants That Represent Possible Types of Alert

Objects
AlertType Class Description
Constant
ALARM An alert that indicates the occurrence of an alarm event
CONFIRMATION A dialog box that asks for user confirmation of an action
ERROR A dialog box that notifies the user of an error
INFO A dialog box that presents an informational message to the
user
WARNING A dialog box that indicates a warning condition

The type of the alert doesn't change the look of the alert. The purpose of the alert typesisto enable
the programmer to more easily differentiate different alert objects. It also gives the
implementation a choice of rendering discrete alert types differently.

An aert's type doesn't enforce its behavior. Y ou saw a similar organization with Command objects
in the HelloWorld applications. Simply assigning a certain type to a Command didn't change its
behavior in any way. It's up to you as the programmer to enforce consistency in the way you treat
similar types of Command and Alert objects.

If you run the example, you'll notice that the aert screens have no commands associated with
them; in fact, they cannot. You'll a'so notice that the alert screens disappear after 5 seconds and
revert to the Build Alert screen. The reason is that the program sets a 5-second default duration for
all alerts.

Alert timeout values must be greater than 0. Setting a value less than O will result in an
11 legalArgumentException. You set the timeout of an alert using the

79

Alert._setTimeout() method. If you specify the Alert.FOREVER constant, the
implementation puts a Done soft button on the alert. The aert remains until the user clicks Done.

In the demo (which you can find on the Web at http://www.phptr.com), scroll down the Build
Alert screen, and you'll see atext field object that contains the string "5." Y ou can edit this
TextField object, which is yet another Ul component, to change the timeout value. If you
specify 0, the application constructs the alert with FOREVER as the timeout.

The TextField isthelast new component that this demo introduces. TextField isaso akind
of I'tem, asFigure 5.1 indicates. TextFields are one of two text entry components. The other is
the TextBox, which we discuss later in this chapter. Text entry components use the concept of
input constraints, which restrict the input to a subset of valid characters defined by the constraints
in use by the component.

The TextField class defines the different kinds of constraints specified by the constants listed in
Table5.3.

Table 5.3. Constraint Types Defined by the TextField Class

Constraint Constant Description

ANY Any alphanumeric characters

[EMATLADDR \Valid e-mail syntax only

INUMER1C \Numeric characters only

PASSWORD Characters are not echoed in display area
PHONENUMBER Numeric only, implementation provides formatting
URL Valid URL syntax only

Y ou specify the constraints in the constructor to create an instance with the desired text attributes.
To create instances that support the handling of a combination of the text categoriesin Table 5.3,
specify alogical AND of those categories. Y ou can determine the state of the constraint flags by
examining the CONSTRAINT_MASK field of aTextField object.

Screen Navigation

Up to this point, you've been introduced to the following Ul components:

e MiIDlet

e Display

e Displayable
e Form

e List

e Alert

e ChoiceGroup
e TextField

Already you can build MIDP applications using them. The demo in Listing 5.3 has addressed
another attribute of GUI programs: screen navigation. If you go back and look at the applicationin
the listing more closely, you'll see that you can navigate back to the previous screen from any
point. Thisis afeature that you seein most GUI programs.

80

http://www.phptr.com/

This behavior is not automatic in MIDP, however. Only oneDisplayable isvisible at any
given time, and the implementation doesn't keep track of any history of displayed screens.

Going "forward" is simple. As the applications demonstrate, you simply create the next
Displayable and request to display it. But going "backwards' isabit trickier. Y ou haveto
ensure that you have a valid reference to the screen object to which you want to go back.

Notice that each class you've seen so far in the demo maintains a reference to the instance created
by the application. In UlComponentDemo.java, for example, there is the following member
declaration:

protected static Displayable instance;

This declaration has the following companion method:

public static Displayable getlnstance()
{

return instance;

}

The method is declared static so it can be referenced easily from anywhere in the application
without having to have the instance present—in this way nicely avoiding avicious cycle.

The AlertDemo application provides a Back soft button on the Build Alert screen in Figure 5.3.
If you click this button, you're taken back to the main screen. Look again at the
commandAction() method of this program, which is shown in Listing 5.4.

Listing 5.4 The command listener must find a reference to the instance of whatever
application screen it wants to return to.

public void commandAction(Command c, Displayable d)
{
UlComponentDemo demo = UlComponentDemo.getlnstance();
Display display = Display.getDisplay(demo);
int timeSec;
int timeMillis;

if (c == go)
{

// Alerts don"t accept application

//defined Commands.

//

String title = elements[type.getSelectedindex()];
Alert alert = new Alert(title);
alert.setString("A " + title + " alert"™);
timeSec = Integer.parselnt(tPref.getString());
timeMillis = timeSec * 1000;

ifT (timeMillis <= 0)

{

}

alert_setTimeout(timeMillis);
display.setCurrent(alert, AlertDemo.getlnstance());

}
it (c == back)

timeMillis = Alert.FOREVER;

UlComponentDemo.getlnstance() .-display();

81

}
}

If the command is the Back command, this method displays the previous screen by passing the
List instance created in UlComponentDemo.javato the Display.setCurrent() method. If
UlComponentDemo.getlnstance() was not declared static, it would be difficult to obtain
areference to the Li st object.

Following thisidiom, the AlertDemo . getInstance() method returns areference to the
instance to which the display should revert after the alert is dismissed. In this case, the reference
this could be used. But the getnstance() method might come in handy if the applicationis
enhanced later. Nevertheless, the important point is the use of the idiom that makes references to
screens readily available.

Incidentally, the first two lines of the commandAction() method are

UlComponentDemo demo = UlComponentDemo.getlnstance();
Display display = Display.getDisplay(demo);

These lines use the same idiom to obtain areference to the MIDlet easily. The
Ul ComponentDemo class defines this static method, which frees you from having to code the
following line every time you need to reference the display:

Display.getDisplay(UlIComponentDemo.getMIDlet());

Of course, thisis not the only way to accomplish screen navigation. Another method is to maintain
astack of referencesto Displayable objects. You can place aDisplayable aobject on a stack
when you make it the current displayable. To go back to the previous screen, pop it off the stack
and set it to bethe current Displayable.

Regardless of the method you choose, the notion is that your program must "know" the next
screen to display. Sometimes you'll want to go back to the previous screen. On other occasions,
you'll want to go two or more screens back, or to some arbitrary screen. Y ou can even use a
combination of the foregoing approaches to accomplish the navigation you need.

More Item Components

The previous examples covered some of the components that build the foundation for all MIDP
applications. In the rest of this chapter, you'll see the remaining Ul components.

DateField

On the main screen of the Ul Component demo application (see http://www.phptr.com/), the
second element of thelist isademo of the DateField class. Figure 5.1 indicates that
DateFieldisakind of Item; assuch, it must be part of aForm in order to be displayed. Listing
5.5 shows the source code for the DateFieldDemo.javafile.

Listing 5.5 Because screens are displayable, the getlInstance() method should
return a screen object of some kind. This one returns an instance of the Form.

import java.util_Date;
import java.util_Calendar;

82

http://www.phptr.com/

import java.util.TimeZone;

import javax.microedition.lcdui.Command;

import javax.microedition.lcdui.CommandListener;
import javax.microedition.lcdui.DateField;
import javax.microedition.lcdui.Displayable;
import javax.microedition.lcdui.Form;

/**
Demonstrates the use of the MIDP Ul DateField class.

@see javax.microedition.lcdui.DateField
*/
public class DateFieldDemo extends Form
implements CommandListener
{

private Command back = new Command(*'Back', Command.BACK,
private static Displayable instance;

private DateField date =
new DateField(*'Date/Time in GMT",
DateField.DATE_TIME,
TimeZone.getDefault());

/**
Constructor.
*/
public DateFieldDemo()
{

super(‘'DateField Demo™);

Calendar cal = Calendar.getlnstance();
date.setDate(cal .getTime());

append(date);
addCommand(back) ;
setCommandListener(this);

instance = this;

/**
Returns the single instance of this class. Calling
this method before constructing an object will return
a null pointer.

@return an instance of this class.
*/
public static Displayable getlnstance()
{

}

public void commandAction(Command c, Displayable d)

{

return instance;

if (c == back)

UlComponentDemo.getlinstance() .display();

83

D

}
}

First of al, notice that DateFieldDemo extends the Form class. The constructor simply adds a
DateField object to the form and the necessary structure isin place. The other methods of the
DateFieldDemo class are similar to previous examples, so | won't discuss them again here.

A DateField issmply atext element that displays a date and time. Figure 5.4 shows the
date/time screen displayed by the DateFieldDemo.

Figure 5.4. A DateField object consists of two parts: a label and a value that
displays the quantity as text.

Funtll
DateField Demo

Dt eaTime in GhAT
Tug, 16 Oct 2001

Thefirst linein Figure 5.4, "Date/Timein GMT," isthe label and is specified in the first argument
of the constructor. The second lineis the date, and the third lineis the time. The
DateFieldDemo no-arg constructor in Listing 5.5 demonstrates how to set the date of the
DateField object using a java.util .Calendar object.

84

This example displays the date and time because the constructor call specifies the display of both
guantities. The DateField class defines three constants (listed in Table 5.4), which let you
control what information is displayed.

Table 5.4. DateField Constants for Controlling the Date/Time Information Displayed

\DateFieId Constant \Description

lpublic static int DATE Display date only
public static int DATE_TIME Display date and time
public static int TIME Display time only

Thethird DateField constructor argument in Listing 5.5 is the time zone specification, which is
ajava.util.TimeZone object. Beware of the fact that the MIDP specification requires
implementations to support only one time zone. Y ou should be aware of what time zones your

implementation supports. It's quite possible that most MIDP implementations will only support
one time zone.

A DateField constructor call can specify atime zone that is not supported by your MIDP
implementation. If the time zone you specify in the constructor is not supported by your MIDP
implementation, your program will still execute without error or warning, but the DateField
object’'s time zone will represent whatever time zone is supported by the implementation, not the
one you reguested. And the time displayed on screen will reflect the time zone used by the
DateField object instead of the time zone you specified in the constructor call.

DateField objects are editable. To edit them,
1. First, select the date field shown in Figure 5.4.
2. Click the device emulator's Select button. Y ou'll see the display change to the one shown

in Figure 5.5.

Figure 5.5. The DateField object implements the interface by which you
edit its date and time values.

85

Fantll
Date/ Time in GMT
L] 2001
A Octobark
13446
T e oIz
14161617 121320

22246 2E2T
TEIL 30321

Back + Save

3. Scroll up and down to highlight the year, month, or day, and change each as desired.

Notice that the implementation has placed a Back soft button and a Save soft button on the display.
This interface presentation istypical of all editable components.

When you finish editing and revert to the previous screen, the displayed date and time will have
changed.

On the main DateFieldDemo screen in Figure 5.4, you could alternatively have scrolled to the
time field and clicked select. The display would then show the screen in Figure 5.6.

Figure 5.6. The implementation presents this Ul to allow you to edit the time value.

86

?II"I
DateTime in GMT

Stringltem

The Stringltem class defines a two-part display component. Stringltem objects contain a
label and some immutable text. Figure 5.7 shows the screen displayed by the StringltemDemo
class, which you can run from the main Ul component display screen.

Figure 5.7. String items contain two parts: a text label and a text value.

87

Imrmtable tem et

FERS Tuy WIri

Listing 5.6 shows the pertinent parts of the StringltemDemo code. Y ou can correlate the text in
the constructor's two argument parameters with the text on the display. Thisisavery simple Ul
component.

Listing 5.6 String items are forms.

import javax.microedition.lcdui.Command;

import javax.microedition.lcdui.CommandListener;

import javax.microedition.lcdui.Displayable;

import javax.microedition.lcdui.Form;

import javax.microedition.lcdui.Stringltem;

/**
This class demonstrates use of the Stringltem MIDP Ul
class.

@see javax.microedition.lcdui.Stringltem

*/
public class StringltemDemo extends Form

88

}

implements CommandListener

private Command back =
new Command(‘'‘Back', Command.BACK, 1);
private static Displayable instance;

private Stringltem si =
new Stringltem('Stringltem®s title",
“"Immutable item text'™);

/**
Constructor.

*/

public StringltemDemo()

{
super(*'Stringltem Demo™);
append(si);
addCommand(back) ;
setCommandListener(this);

instance = this;

Stringltem objects give you a convenient way to associate a label with avalue. Y ou can put a
StringinaForminstead of using aStringltem object, but the Stringltem hasthe
advantage that its implementation ensures that the label and value strings remain together on the

display.

Gauge

The Gauge classis also derived from I tem. Running the GaugeDemo from the main screen
creates the display shown in Figure 5.8.

Figure 5.8. There are interactive and noninteractive gauges. You can modify the
value of an interactive gauge.

89

--IDDDDD”H

Mon-interactive

i
1 [l

The example shown in Figure 5.8 places four items on a Form: two gauges and a String label
for each one. The labelsidentify the two different types of gauges defined by the Gauge class:
interactive and noninteractive. The implementation renders the two types of gauges differently so
the user can distinguish their type.

The user can set the value of an interactive gauge. Simply scroll the display to highlight the first
gauge. It takes on a solid rendering when highlighted and is grayed out when not highlighted.
Using the left and right arrow buttons that appear at the bottom of the screen, you can modify the
gauge's value. Like the vertical arrows you've seen aready, these horizontal arrows are created
and managed by the implementation.

Notice that you have to click the arrow keys several times before you see an increase or decrease
in the number of barsthat arefilled in. The reason is the limited screen resolution that the gaugeis
ableto display. If the overall range of values that the gauge representsis too great, the gauge
implementation must map several values to each vertical bar that appears on the gauge's display.

The bottom arrow on the screen indicates that you can scroll down the display further. In the
example shown in Figure 5.8, the screen isn't large enough to show the full height of the second

90

gauge. Scrolling the display to the bottom will display the whole of the noninteractive gauge.
After you've scrolled down, naotice that now there are no left and right arrows, because the value of
noninteractive gauges cannot be changed.

It's important to distinguish between the ability to interact with a gauge and the ability to modify
its value. Both types of gauges can be modified programmatically.

The abbreviated source code in Listing 5.7 shows how to set the maximum and initial values of a
Gauge in the constructor.

Listing 5.7 The four parameters required to specify a gauge are its mode, human
readable title, initial value, and maximum value.

import javax.microedition.lcdui.Command;

import javax.microedition.lcdui.CommandListener;
import javax.microedition.lcdui.Displayable;
import javax.microedition.lcdui.Form;

import javax.microedition.lcdui.Gauge;

/**
This class demonstrates the use of the Gauge MIDP Ul
class.

@see javax.microedition.lcdui.Gauge
*/
public class GaugeDemo extends Form
implements CommandListener

{

private String gaugellabel = new String(*Interactive gauge™);

private Gauge interactiveGauge =
new Gauge("'Interactive', true, 50, 15);

private String gauge?lLabel = new String(''Non-interactive™);
private Gauge staticGauge = new Gauge(''Static", false, 50, 25);
/**

Constructor.
*/

public GaugeDemo()
{

super(*'Gauge Demo');

append(gaugellLabel);
append(interactiveGauge);

append(gauge2lLabel);
append(staticGauge);

addCommand(back) ;
setCommandListener(this);

instance = this;

91

Unlike the demo, areal application would presumably also change the gauge value during its
lifetime, using the following methodsin the Gauge class:

public void setValue(int value)
public int getvalue()

Ticker

A ticker isan object that provides scrolling text across the top of the display. The TickerDemo in
Listing 5.8 produces the display shown in Figure 5.9.

Figure 5.9. The ticker is placed on the display, not on the screen. The
implementation defines an area for the ticker independent from any screen,
allowing it to be shared by multiple screens.

A Ticker isassociated with the display, not with the screen. Y ou place aTicker on ascreen
using the Screen.setTicker(Ticker t) method, asshown inthecodein Listing 5.8.

92

Listing 5.8 Ticker demo source code

import javax.microedition.lcdui.Command;

import javax.microedition.lcdui.CommandListener;
import javax.microedition.lcdui.Display;

import javax.microedition.lcdui.Displayable;
import javax.microedition.lcdui.Ticker;

import javax.microedition.lcdui.Form;

/**
This class demonstrates use of the Ticker MIDP Ul
component class.

@see javax.microedition.lcdui.Gauge
*/
public class TickerDemo extends Form
implements CommandListener

{

private String str =
"This text keeps scrolling until the demo stops...";

private Ticker ticker = new Ticker(str);
private Command back = new Command(‘'‘Back', Command.BACK, 1);
private static Displayable instance;

/**
Constructor.
*/
public TickerDemo()
{

super("'Ticker demo™);
instance = this;

addCommand(back) ;

setTicker(ticker);
setCommandListener(this);

}

Y ou can associate the same Ti cker object with multiple screens, however. The implementation
renders the Ticker on some constant portion of the display, in this case at the top of the display.

Looking at Figure 5.1 again, you'll notice that Ticker isnot an I tem. Its derivation directly from
java.lang.Object givesyou aclue asto why aTicker can betied to the display and not to a

screen. It doesn't need to be derived from 1tem, because it realy is not something that is placed in
aForm.

Imageltem

Several MIDP Ul components support the display of images. Figure 5.10 shows an image
displayed on aform. Listing 5.9 shows the source code for the program that displays Figure 5.10.

Figure 5.10. Several MIDP Ul components support the display of an image. Here, a
form contains an Imageltem component, which displays an image.

93

]

DefaultColorPho

FERS Tuy WIri

Listing 5.9 The constructor creates an image object and passes it to the Ul
component for display. Notice that the path specification for the image is relative
to the resource directory of this project under the J2ME Wireless Toolkit
installation.

import javax.microedition.lcdui.Command;

import javax.microedition.lcdui.CommandListener;
import javax.microedition.lcdui._Displayable;
import javax.microedition.lcdui.Form;

import javax.microedition.lcdui.lImage;

import javax.microedition.lcdui.lImageltem;

import java.io.lOException;
/**
This class demonstrates the use of the MIDP Ul

Imageltem class.

@see javax.microedition.lcdui.lImageltem

94

*/
public class ImageltemDemo extends Form
implements CommandListener

{

private Imageltem imageltem;

/**
Constructor.

@throws I10Exception if the specified image resource
cannot be found.

*/

public ImageltemDemo() throws I0Exception

{

super(*'Imageltem Demo™);

String path = "/bottle80x80.png";

Image image Image.createlmage(path);

imageltem = new Imageltem('Ship in a bottle"”,
image,
Imageltem.LAYOUT_CENTER,
"Image not found™);

append(imageltem);

addCommand(back) ;
setCommandListener(this);

instance = this;

}

Listing 5.9 demonstrates the use of the Image I tem MIDP Ul component class. An Image Il tem
isasubclass of 1tem, so it must be placed in aForm as demonstrated by the listing.

Before you can display an image, you must first create an image object. The
Javax.microedition. Icdui . Image class definesimages. To instantiate Image, specify the
path name of an image file. Image files must be stored in the Portable Network Graphics (PNG)
format. 2ME supports the manipulation of images in this format only.

Noticein Listing 5.9 that the path name of the image file is relative to the res/ directory of the
UlComponents project directory. The res/ directory contains all resource files, including image
files. If you place your images elsewhere, they will not be found, and your program will throw an
10Exception when it tries to open thefile.

In Listing 5.9, the constructor builds an Image I tem using the Image object just created. The
constructor parameters are the title string that displays above the image, the image object, the
image placement directive, and atext string to be displayed in case the image can't be displayed
for some reason.

The Image I tem classisthe only class that provides layout control for images, but several other
MIDP Ul components use images, too. Table 5.5 lists the full set of MIDP Ul components that use
images.

Table 5.5. MIDP Ul Components That Use Images
\MIDP Ul Component Class |Description

95

Alert image displayed along with text

ChoiceGroup Image displayed to the left of each element's text
List Image displayed to left of item text
Imageltem Provides layout control for the image object itself

The ChoiceGroup and List classes can display images as part of the representation of each of
their elements. The API for these classesisfairly straightforward, so | won't show examples of
each here. The same idiom of building the image object and passing it to the component applies
for al the MIDP Ul components that use images.

One More Screen Type

Y ou've seen all the MIDP components except one: the TextBox. UnlikeaTextField, a
TextBox isamultiline, editable text area. Look at the handy inheritance hierarchy of Figure 5.1
once more, and you'll see that TextBox isakind of Screen, not an 1tem.

Because a TextBox isaDisplayable, you must create a MIDlet object to demonstrate its use;
you can't placeit in another Screen or Form, as you can with the components derived from
I'tem. Figure 5.11 shows the TextBoxDemo screen.

Figure 5.11. The TextBoxDemo screen

96

Futll ABC e
A TextEox

“ou can edit the
corterts of this
TextBox

FERS Tuy WIri

Figure 5.11 shows the TextBox instanceitself, which isthe Screen. Listing 5.10 shows the
partial source code of the TextBoxDemo class. The parts that are omitted are very similar
structurally to the Ul ComponentDemo code, and relate to the attributes of the MIDlet.

Listing 5.10 Text boxes are screens and don't need a form in which to exist.

import javax.microedition.lcdui.Command;

import javax.microedition.lcdui.CommandListener;
import javax.microedition.lcdui.Display;

import javax.microedition.lcdui.Displayable;
import javax.microedition.lcdui.Form;

import javax.microedition.lcdui.TextBox;

import javax.microedition.lcdui.TextField;
import javax.microedition.midlet_MIDlet;

/**

This MIDlet demonstrates use of the MIDP Ul TextBox
Displayable.

97

@see javax.microedition.lcdui.TextBox
*/
public class TextBoxDemo extends MIDlet
implements CommandListener
{
private Command quit =
new Command(“Exit", Command.EXIT, 1);

private static TextBoxDemo instance;

// The TextBox Ul component.
private TextBox textBox;

// The maximum number of characters that the TextBox can
// hold.
private int MAX_SIZE = 100;

// The TextBox"s initial text.
private String initialText =
"You can edit the contents of this TextBox';

/**
Constructor.
*/
public TextBoxDemo()
{
super();
instance = this;
}
public void pauseApp(Q
{
}
public void destroyApp(boolean destroy)
{

textBox = null;
initialText = null;
instance = null;

}
void quit()
destroyApp(true);
notifyDestroyed();
}
public void startApp()
{
textBox = new TextBox("'A TextBox",
initialText,
MAX_SIZE,

TextField.ANY);
textBox.addCommand(quit);
textBox.setCommandListener(this);

displayQ;

98

/**
Returns the single instance of this class. Calling
this method before constructing an object will return
a null pointer.
@return an instance of this class.

*/

public static TextBoxDemo getlnstance()

{

}

public void displayQ
{

return instance;

Display.getDisplay(this).setCurrent(textBox);

public void commandAction(Command c, Displayable d)

{
if (c == quit)
{

quit(Q);

}
}

Y ou can see from the constructor that a TextBox issimilar to aTextField, except that it'sa
multiline text area. The arguments are the title, the initial text, the maximum number of characters
that it can hold, and the input constraints. The constraints are exactly the same constraints used by
the TextField class.

Figure 5.11 displaysthe initial text used to create the TextBox instance. Just as with other
editable objects, you simply select the TextBox using the emulator's Select button and then edit
the contents. Y ou can navigate using the four arrow keys, erase characters using the Clear key,
and input using either the keypad keys or your computer keypad when you're using an emulator.
Of course, the program can aso manipulate the content using arich API that supports inserting,
deleting, setting the maximum size, setting constraints, and so forth. Figure 5.12 shows the screen
after selecting the text box for editing.

Figure 5.12. The precise interface presented for editing a text box is
implementation-dependent.

99

o can edi the co
ents of this TexdB

X

Chapter Summary

This chapter introduced you to the full set of MIDP Ul component classes. There are two genera
categories of Ul components: those under the Displayable hierarchy and those under the 1tem
hierarchy.

The Screen class derives directly from Displayab e and defines the main abstraction in the
MIDP. MIDP applications are fundamentally based on screens.

A Form, akind of Screen, isthe only kind of screen that can aggregate other components. A
Form can contain String objects, images defined by the Image class, and objects whose types
are subclasses of the 1tem class.

Thetypical MIDP application must be able to navigate between screens. Therefore, screens must
be able to pass areference to avalid instance of the screen object that the display must display

100

next. The standard idiom is to provide a static method that returns such areference in each class
that defines a screen.

Chapter 3 presented overall program structure and programming metaphors. Chapter 4 covered the
MIDP high-level API. This chapter complemented it with an introduction to all the MIDP
components that implement the high-level API.

The next chapter introduces you to the MIDP low-level API.

101

Chapter 6. The MIDP Low-Level API

e Command and Event Handling
e Graphics Drawing

This chapter teaches you how to use the MIDP low-level API, which is the second of two MIDP
Ul component APIs. Y ou learned about the other API, the MIDP high-level API, in chapter 4. The
low-level APl makesit possible for you to do two things that you can't do with the high-level API:

e Obtain low-level information about events (such as key stroke information), that is
delivered to your component.
e Definethelook of the your Ul component.

Two classes comprise the definition of the low-level API:

e javax.microedition. lcdui.Canvas
e Javax.microedition.lcdui.Graphics

Figure 6.1 reproduces a subset of the MIDP inheritance hierarchy diagram in Figure 5.1 in chapter
5. You can see that the Canvas class derivesfromDisplayable.

Figure 6.1. Canvas objects are displayable, but because they aren't screens, they
don't share any of the elements of the screen abstraction present in the MIDP high-
level Ul components.

java.lang.Object

F a5
' Screen ! |Canvas,

' _: Abstract class

Concrete class

Because the Canvas classisn't atype of Screen, however, it shares none of the abstractions
defined by the Screen hierarchy—adding atitle or aticker isn't possible, for example.

The Canvas classis abstract. To useit, you must subclassit. Y our concrete subclass defines a
new component with command and event handling behavior and, with the help of the Graphics

102

class, it definesits own look. The subclass provides event handling and rendering capabilities that
are different from the ones that screen components enable.

Command and Event Handling

With aCanvas component, you can add and remove high-level commands and set asingle
command listener to a canvas, just as you can with other displayable components. A Canvas can
also implement CommandL i stener and register itself asits own listener.

In addition to handling high-level commands, however, the Canvas class also handles low-level
commands. Canvas components themsel ves are the source of low-level key and pointer events,
which are generated by user key actions and pointer movement on the device. They are aso their
own low-level event listeners. The Canvas class defines the interface for low-level event
handling as part of its own API; there is no other listener interface to implement.

The MIDP implementation passes information about a low-level event to the Canvas object by
calling an appropriate method on the canvas object. Table 6.1 lists the possible methods.

Table 6.1. Low-level API Event Notification Methods
\Method Name |Description
lprotected void keyPressed(int KeyCode) |A key was pressed and released.
protected void keyReleased(int KeyCode) A key was released.
protected void keyRepeated(int KeyCode) A key was pressed repeatedly.

protected void pointerPressed(int x, A pointer was pressed.
int y)
protected void pointerDragged(int x, A pointer was dragged.
int y)
protected void pointerReleased(int X, |A pointer was released.
int y)
protected abstract void paint(Graphics |The repaint request of the Canvas
9 occurred.

To perform low-level event handling, your concrete Canvas subclass must override one or more
of the methodsin Table 6.1. By not overriding the Canvas class's empty definitions, you're
ignoring events and foregoing the ability to handle them. In addition, your Canvas subclass must
define the paint () method, which is declared abstract in Canvas.

Listings 6.1 and 6.2 demonstrate simple command and event handling on a Canvas. The codein
Listing 6.1 isthe MIDlet code for the demo, much of which looks familiar. The code in Listing 6.2,
however, constructs a Canvas subclass, the Displayabl e that the codein Listing 6.1 places on
screen.

Listing 6.1 The CanvasDemol demo requires a MIDlet like any other MIDP
application.

import javax.microedition.midlet_MIDlet;
import javax.microedition.lcdui.Display;

/**
Defines the MIDlet that displays a blank Canvas on the

103

device"s display. The Canvas displayed is an instance
of the Canvasl class.

@see Canvasl
*/
public class CanvasDemol extends MIDlet

// Holds a reference to the instance of this class.
private static CanvasDemol midlet;

// Holds a reference to the Canvas that the user sees on
// the display.
private static Canvasl instance;

private Display display;
private Canvasl canvas;

/**
No-arg constructor. Calls the MIDlet class no-arg
constructor.
*/
public CanvasDemol()
{
super();
display = Display.getDisplay(this);
instance = canvas;
midlet = this;
}

/**
Returns a reference to the MIDlet associated with
this displayable.

@returns the MIDlIet which displays this object.
*/
public static CanvasDemol getMIDlet()
{

return midlet;

}

public void startApp()
{

canvas = new Canvasl();
display.setCurrent(canvas);

}

public void pauseApp(Q)
{

}

public void destroyApp(boolean destroy)
{

instance = null;
canvas = null;

}
void quit()

destroyApp(true);
notifyDestroyed();

104

}

}

Listing 6.2 To use a Canvas, you must create a subclass of Canvas.

import javax.microedition.lcdui.Canvas;

import javax.microedition.lcdui.Command;

import javax.microedition. lcdui.CommandListener;
import javax.microedition.lcdui.Display;

import javax.microedition.lcdui._Displayable;
import javax.microedition.lcdui.Graphics;

/**

Defines a subclass of Canvas that is displayed by the
CanvasDemol MIDlet. This Canvas has a single "Exit"
command so the user can terminate the demo.

@see CanvasDemol

*/
public class Canvasl extends Canvas

{

implements CommandListener

private Command exit =
new Command("Exit", Command.EXIT, 1);

/**
No-arg constructor.
*/
public Canvasl()
{

// Note the call to super(), which is the Canvas

// no-arg constructor! This is very important.

// Without a call to super() your Canvas instances

// will not be able to behave like a real Canvas.

// They won"t display properly, they won"t paint

// properly, and they won"t be able to process events.
super();

addCommand(exit);
setCommandListener(this);
printCanvasinfo();
}
/**
Paints the look of the Canvas that the user sees. In
this case, it "paints" nothing. Therefore, this
Canvas has no visual representation because there is
nothing painted on the screen by this method.
*/
public void paint(Graphics g)
{

}

public void commandAction(Command c, Displayable d)

{
if (c == exit)
CanvasDemol.getMIDlet().quit();

/**

105

Defines the processing to be done in response to a
key release event occuring on this Canvas. This
method overrides the same method in Canvas.

*/

public void keyReleased(int keyCode)

{
printKeyEventinfo(keyCode);

}

/**
Defines some event handling for key events. This
method simply prints to standard output some
diagnostic information about key events on the

Canvas.
*/
protected void printKeyEventinfo(int keyCode)
{
System.out.printIn(*’Key code = " +
keyCode) ;
System.out.printIn(*’Key name = " +
getkKeyName(keyCode)) ;
System.out.printIn(''Game action = " +
getGameAction(keyCode));
}
/**

Prints diagnostic information about the Canvas object
attributes and capabilities.
*/
protected void printCanvasinfo()
{
System.out.printIn(‘'Device height =" +
getHeight());
System.out.printIn(*'Device width = +
getWidth(Q));
System.out.printIn(*'Pointer events = +
hasPointerEvents());
System.out.printIn(*'Pointer motion events "o+
hasPointerMotionEvents())
System.out.printIn(‘'Repeat events =
hasRepeatEvents());
}

}

+

To convince yourself that high-level command processing still works on a Canvas, run the
MIDlet shown in Listing 6.2. Y ou will see that the display, shown in Figure 6.2, presents an Exit
soft button, which, when activated, terminates the MIDlet.

Figure 6.2. Canvases can still do command processing. They can be the source of
command events, which the implementation delivers to a registered command
listener.

106

Eioctaukcoorehane R I= Y
-

Key Events

The Canvasl class overrides the keyRe leased () method in Canvas. Because the object
registersitself as an event listener, it receives key events in response to user key actions.

Clicking any keypad key results in the generation of two key events: a key-pressed event and a
key-released event. This program prints information about the key-released key. The information
about a key event includes a key name, akey code, and possibly associated game action
identification.

A key nameisaString that represents the human-readable representation of the key; it's usually
similar to (if not the same as) the text physically printed on the device's key. A key codeisan
integer whose value uniquely represents each key. For standard ITU-T keys, namely, 0 through 9,
* and #, the key code is the Unicode value of the character.

Programs should use the Canvas class's predefined constants instead of the Unicode value of the

keystroke to check which key was pressed. This approach makes your programs more portable.
The Canvas class defines a constant for each of the key codes, shown in Table 6.2.

Table 6.2. Canvas Class Constants Representing ITU-T Keys

Canvas Class Constant Description
public static final int KEY_NUMO Represents keypad 0 key
public static final int KEY_NUM1 |Represents keypad 1 key

107

public static final int KEY_NUM2 |Remesanskeypaj2key

public static final int KEY_NUM3 Represents keypad 3 key
public static final int KEY_NUM4 Represents keypad 4 key
public static final int KEY_NUM5 Represents keypad 5 key
public static final int KEY_NUM6 Represents keypad 6 key
lpubliic static final int KEY_NUM7 IRepresents keypad 7 key
lpublic static final int KEY_NUM8 IRepresents keypad 8 key
public static final int KEY_NUM9 Represents keypad 9 key
public static final int KEY_POUND Represents keypad # key
public static final int KEY_STAR Represents keypad * key

For nonstandard (device-specific) keys such as the Up, Down, Left, Right, and Select buttons on
mobile devices, the key code is an implementati on-dependent value and must be negative
according to the MIDP specification. Again, however, you should use the predefined constants
shown in Table 6.3 and not worry about the actual integer value.

Table 6.3. Canvas Class Constants Representing Game Actions Mapped to Mobile
Device Keys

Canvas Class Constant Description

public static final int |Represents the up arrow keypad key
uP

public static final int |Represents the down arrow keypad key
DOWN

public static final int |Represents the left arrow keypad key
LEFT

public static final int |Represents the right arrow keypad key

RIGHT
public static final int |Represents the fire (select) arrow keypad key on
FIRE mobile devices

Game Actions

In addition to the constants you've seen aready, the Canvas class defines GAME_A, GAME_B,
GAME_C, GAME_D, and FIRE constants that represent game actions, revealing the influence of the
gaming industry on the 2ME. The values of these constants are nonstandard and change between
implementations.

Game actions are mapped to other keys because most devices don't have keys or buttons specific
to gaming. The value of a game action is mapped to one or more key codes, which are binary
values, each of which uniquely identifies akey. A key code, on the other hand, can be mapped to
only asingle game action. Y ou can determine a particular mapping by using these two methods:

public int getKeyCode(int gameAction)
public int getGameAction(int keyCode)

Listing 6.2 uses these methods to print diagnostic information about each key-released event
received. If you run this program and examine the output, you'll see that not every key has an
associated game action. In that case, the getGameAction() method returns avalue of 0.
Moreover, not al devices implement GAME_A, GAME_B, GAME_C, and GAME_D. An example of a
device that doesn't implement these game actions is the Motorola Accompli 008.

108

Graphics Drawing

Undoubtedly, you noticed that the canvasin Figure 6.2 was blank except for the Exit soft button.
Thereason is that the Canvas1 class doesn't defineits visual representation. All concrete
subclasses of Canvas must define their look in order to render any visual attributes. They must
enlist the help of the javax.microedition. Icdui .Graphics classto do so. The very
purpose of the Graphics classisto support drawing on canvases.

The Graphics Model

The Graphics class defines |low-level graphics drawing capabilities. If you've already done
AWT or Swing development, this classwill look very familiar. In fact, its features and APl are
almost identical to, abeit a subset of, those in the 2SE Graphics class.

The Graphics class defines amodel that enables applications to draw—or paint in Java
parlance—basic two-dimensional shapes on a Canvas. Defining the method

public void paint(Graphics g)

does painting in your Canvas subclass, overriding the one declared protected abstractin
Canvas. The Canvasl class has an empty paint(Graphics g) definition, which explains
why it doesn't create any visual representation.

Every concrete Canvas subclass has accessto aGraphics object. ThisGraphics objectisa
copy of the device's native graphics context and abstracts the device's implementati on-dependent
graphics context, which is part of the device's native operating system software.

TheGraphics object that you manipulateis created by the Canvas
implementation upon initialization of the Canvas object. Thisisone
major reason why you must ensurethat your Canvas subclass
constructor callssuper()! Theimplementation passes the graphics
object to your canvaswhen it callsyour classspaint(Graphics g)
method.

The Graphics Class
The Graphics class supports the following abstractions:

drawing and filling of two-dimensional geometric shapes
color selection for the graphics pen

selection of font for text drawing

clipping

tranglation of the Graphi cs coordinate system

Devices differ in their support for attributes like color. Therefore, the Display class provides the
methods

public int isColor()
public int numColors()

so that you can discern information about a given device's support for color and the number of
colors provided, or support the number of levels of gray scale for noncolor devices.

109

The primary abstraction defined by the Graphics classisthe representation of aCanvas asa
two-dimensional grid of points, or pixels. Figure 6.3 is a schematic representation of this drawing
area. The graphics context defines this (x, y) coordinate plane, in which coordinates lie between
the pixels, in much the same way that your favorite text editor's cursor aways lies between two
characters.

Figure 6.3. The Graphics class abstracts the display as a two-dimensional grid of

pixels.
xincreases
origin g
(0,00
g L] L] L L] L] L]
8 U L L] L L L]
o
=
L] L] L - L] L]
L [[L] L] L]
L] L] L L L] -

(0.4)
Basic Geometric Drawing

The Graphics class provides routines for drawing and filling the following types of geometric
figures:

lines
rectangles
arcs

text characters

For all geometric drawing operations, the Graphi cs class uses a graphics pen, which draws lines
only one pixel wide. The graphics pen draws to the right and downward from its coordinate
location, as shown in Figure 6.3. Looking at some examples will make its operation clear.

Lines. Figure 6.4 shows lines drawn on a Canvas.

Figure 6.4. You can draw lines on a Canvas. You can simulate lines of thickness
greater than one pixel by drawing adjacent lines in the same pen color.

110

FERS

Tuy

WIrTi

Listing 6.3 shows the source code that produces Figure 6.4, but I've omitted the MIDlet code that
displaysit. You can find the complete source at http://www.phptr.conV. For the rest of the
examples in this chapter, assume that the displayable classes you see here are created and
displayed by a MIDlet in asimilar fashion to examples you've seen in previous chapters. From this
point onward, I'll show only new code.

Listing 6.3 The demo defines a paint() method, which ensures that some visual
representation appears on the device's display.

import javax.
import javax.
import javax.
import javax.
import javax.
import javax.

import javax

/**

microedition.
microedition.
microedition.
microedition.
microedition.
microedition.
.microedition.

Icdui
Icdui
Icdui
Icdui
Icdui
Icdui
Icdui

.Canvas;
.Command;
.CommandListener;
-Display;
-Displayable;
-Graphics;
.Command;

111

http://www.phptr.com/

Draws a series of lines to demonstrate the different
types and styles of lines that can be drawn with the
Graphics class.

@see javax.microedition.lcdui.Graphics
*/
public class LineDemo extends Canvas
implements CommandListener
{

// A constant that represents the color white.
private static final int WHITE =
OXFF << 16 | OxFF << 8 | OxFF;

private Command back = new Command(‘‘Back",

Command . BACK,

1);
private GraphicsDemo gDemo = GraphicsDemo.getlnstance();
private Display display = Display.getDisplay(gDemo);

/**
No-arg constructor.

*/

public LineDemo()

{
super();
addCommand(back) ;
setCommandListener(this);
display.setCurrent(this);

}

/**
Paints the clip rectangle white, effectively erasing
whatever was displayed on the Canvas previously.

*/

protected void paintClipRect(Graphics @)

{
int clipX = g.getClipX(Q);
int clipY = g.getClipY(Q);
int clipH = g.getClipHeight();
int clipW = g.getClipWidth();
int color = g.getColor();

g-setColor(WHITE);
g-FillRect(clipX, clipY, clipW, clipH);

g.-setColor(color);

}

/**
Paints the look of this Canvas subclass.
*/
public void paint(Graphics g)
{
paintClipRect(g);

int width = getWidth(Q;
int height = getHeight();

g-drawLine(20, 10, width - 20, height - 34);

g.drawLine(20, 11, width - 20, height - 33);
g.drawLine(20, 12, width - 20, height - 32);

112

-.drawLine(20, 13, width - 20, height - 31);
.drawLine(20, 14, width - 20, height - 30);

Q Q

-setStrokeStyle(Graphics.DOTTED);

-drawLine(20, 24, width - 20, height - 20);
-drawLine(20, 25, width - 20, height - 19);
-drawLine(20, 26, width - 20, height - 18);

QQ Q@

-setStrokeStyle(Graphics.SOLID);
.drawLine(20, 36, width - 20, height

8);

Q Q

}

public void commandAction(Command c, Displayable d)

{
iT (c == back)
{

GraphicsDemo.getlnstance() .display();

}
}
}

Thepaint(Graphics g) method isthe highlight of this example. Because Canvas defines
this method to be abstract, subclasses must provide a concrete definition. Nothing appeared on
the screen created by the program in Listing 6.2 becauseits paint(Graphics g) method didn't
define any drawing operations.

Y our program must perform all itsdrawing inits paint(Graphics g) method on the
Graphics object passed to it. Y ou invoke the Graphics class's dedicated drawing routines on
thisinstance that is passed to your canvas.

To draw aline, you must specify the (X, y) coordinates of its start and end points. The (x,)
coordinates are defined relative to the point (0, 0), which, at the time the graphics context is
created, represents the pixel at the top-left corner of the display asindicated in Figure 6.3. The x
coordinate specifies the horizontal distance to the right from column O (the left edge of the
display), and the y coordinate specifies the vertical distance down from row O, which is the top of

the display.

Lines are one pixel thick. To create thicker lines, you must draw adjacent lines as demonstrated by
Listing 6.3. The three lines shown in Figure 6.4, produced by Listing 6.3, arefive, three, and one
pixel wide, respectively.

Additionally, the middle line appears dashed. Y ou can set the stroke style for any drawing using
the setStrokeStyle () method as demonstrated. The exact rendering of lines that use the
Graphics.DOTTED stroke style isimplementation-dependent.

Rectangles. Y ou can draw two kinds of rectangles: regular and rounded. Figure 6.5 shows severd
adjacent rectangles.

Figure 6.5. Rectangles, like all geometric drawing, can be drawn in different colors
by specifying the color of the graphics pen. The middle rectangle is red, although it
appears as a shade of gray in the figure.

113

FERS Tuy WIri

Listing 6.4 showsthe paint(Graphics g) source code for this example.

Listing 6.4 The RectangleDemo demo demonstrates the graphics calls for
drawing rectangles. Notice that there is a call to fill rectangles.

import javax.microedition.lcdui.Canvas;

import javax.microedition.lcdui.Command;

import javax.microedition.lcdui.CommandListener;
import javax.microedition.lcdui.Display;

import javax.microedition.lcdui.Displayable;
import javax.microedition.lcdui.Graphics;

import javax.microedition.lcdui.Command;

/**
Draws rectangles on a Canvas using the drawing methods
in the javax.microedition.lcdui.Graphics class.

@see javax.microedition.lcdui.Graphics

114

*/

public class RectangleDemo extends Canvas
implements CommandListener

{

// Constant representing the color white.
private static final int WHITE =
OXFF << 16 | OxFF << 8 | OxFF;

private Command back = new Command(*‘Back",
Command . BACK,
1);
private Display display =
Display.getDisplay(GraphicsDemo.getinstance());

/**
No-arg constructor. Calls the Canvas no-arg
constructor.
*/
public RectangleDemo()
{
super();
addCommand (back) ;
setCommandListener(this);
display.setCurrent(this);

}

/**
Paints the clip rectangle white, effectively erasing
whatever was displayed on the Canvas previously.

*/

protected void paintClipRect(Graphics @)

{
int clipX = g.getClipX();
int clipY = g.getClipY(Q);
int clipH = g.getClipHeight();
int clipW = g.getClipWidth();
int color = g.getColor();

g-setColor(WHITE);
g-FillRect(clipX, clipY, clipW, clipH);

g-setColor(color);

}

/**
Paints the look of this Canvas subclass.
*/
public void paint(Graphics g)
{
paintClipRect(g);

int width = getWidth(Q;
int height = getHeight();

int x0
int y0
int barW

int initHeig

t = height - 10;
int deltaH 1

0;

g.-drawRect(x0, y0, barW, initHeight);

115

g-FillRect(x0 + barW, yO + deltaH, barW,
initHeight - deltaH + 1);

g-drawRect(x0 + barW * 2, y0O + deltaH * 2,
barW, initHeight - deltaH * 2);

g.-setColor(255, 00, 00);

g-FillRect(x0 + barW * 3, yO + deltaH * 3,
barW, initHeight - deltaH * 3 + 1);

g-setColor(0, 0, 0);

g-drawRect(x0 + barW * 4, y0 + deltaH * 4,
barW, initHeight - deltaH * 4);

g-FillRect(x0O + barW * 5, yO + deltaH * 5,
barW, initHeight - deltaH * 5 + 1);

g-drawRect(x0 + barW * 6, yO + deltaH * 6,
barW, initHeight - deltaH * 6);

g-FillRect(x0O + barW * 7, yO + deltaH * 7,
barW, initHeight - deltaH * 7 + 1);

}

public void commandAction(Command c, Displayable d)

{
iT (c == back)

GraphicsDemo.getlnstance() .display();
}
}
}
Arcs. The Graphics class also supports the drawing of arcs. To draw an arc, you must specify
Six parameters. These parameters are the four quantities that define the arc's bounding rectangle,

its start angle, and its end angle. The bounding rectangle is defined by the same four parameters
required for rectangles.

The drawing routine traces the arc along a path from the start angle to the end anglein a
counterclockwise direction. Angle O degreesis aong the positive x-axis of the coordinate plane.
Figure 6.6 shows two arcs drawn by the paint(Graphics g) methodin Listing 6.5.

Figure 6.6. Like other geometric figures, arcs can be drawn in outline mode or fill
mode.

116

Listing 6.5 Arcs can be drawn in outline or in filled form, like rectangles.

import javax.microedition.lcdui.*;

/**
Demonstrates the drawing of arcs using the Graphics
class.

@see javax.microedition.lcdui.Graphics
*/
public class ArcDemo extends Canvas implements CommandListener

{

public void paint(Graphics g)
{
paintClipRect(g);

int width = getWidthQ);

117

int height = getHeight();

g.drawArc(5, 5, 80, 40, 90, 300);

g-fillArc(5, 60, 80, 40, 0, 250);
}

,

Notice that the second arc isfilled and that it was created using the i I lArc () method instead of
the drawArc () method.

Text. The Graphics class also supports "drawing” character text on aCanvas. Thethree
methods in Table 6.4 are Canvas class methods that support text placement on a Canvas.

These methods calculate an imaginary bounding rectangle, which defines the boundary of the area
the text occupies, around the text to be drawn, shown in Figure 6.7. The dimensions of this
rectangle depend on the length of the string and the font used for rendering.

Figure 6.7. Text is "drawn" within the bounds of an imaginary bounding rectangle,
which is calculated by the text-drawing routines.

Left | Top Heenter | Top Right | Top

Left | Baseline Hecenter | Baseline Right | Bassline

The (x, y) arguments in the methods just shown represent the position at which the bounding
rectangle should be placed. The anchor parameter specifies the anchor point of the bounding
rectangle. An anchor point identifies which one of six possible points on the perimeter of the text's
bounding rectangle should be placed at the (x, y) position.

Table 6.4. Canvas Class Methods That Support Drawing Text on a Canvas

Canvas Text Drawing Method |Description

Name

public void Draws the characters that comprise the string argument,
drawString(String str, \with the specified anchor point at the position indicated
it x, by the (x, y) coordinates.

int vy,

int anchor)

public void Draws the characters that comprise the substring
drawSubstring(String defined by the starting point and offset, with the

str, specified anchor point at the position indicated by the (x,
int offset, y) coordinates.

int len,

int x,

int vy,

int anchor)

public void Draws the character with the specified anchor point at
drawChar(Char char, the position indicated by the (x, y) coordinates.

int x,

int vy,

int anchor)

118

Figure 6.7 shows the six anchor points for positioning a text string's bounding rectangle. The value
of the anchor point isreally a choice for the weighting of the point on the bounding rectangle. Two
attributes comprise an anchor point's weighting: a horizontal and a vertical weighting policy.

Table 6.5 defines the Graphi cs class constants that represent them. They are defined public
static final int.

The Graphics class defines these constants for valid horizontal weighting values and aso
defines the values for valid vertical weighting values.

Table 6.5. Graphics Constants for Specifying an Anchor-Weighting Policy
Anchor Constant Description
static int LEFT Position the left edge at coordinate x.
static int HCENTER |Position the horizontal center at coordinate x.
static int RIGHT |Position the right edge at coordinate x.

static int TOP Position the top at coordinate y.
static int Position the text baseline at coordinate y.
BASELINE

static int BOTTOM |Position the bottom of the bounding rectangle at coordinate y.

static int VCENTER |For images only; position the image's vertical center at
coordinate y.

Figure 6.8 shows some text drawn on a Canvas, and Listing 6.6 showsthe paint(Graphics g)
method of the source code that displaysit.

Figure 6.8. To draw text, specify the location of its anchor point. Draw vertical text
by positioning and drawing each character of the text.

119

[=3 DefaultColorPho = |0 x|
-

Famll

Cefault
Large

PR R

D
L
E
R
T
I
C
i
L

FERS l Tuy ' 'ﬁ'.i.'n’I

Listing 6.6 To draw text, specify the anchor point and the weighting of the anchor
point. You can also specify the font of the text to be drawn.

import javax.microedition.lcdui.Canvas;

import javax.microedition.lcdui.Command;

import javax.microedition. lcdui.CommandListener;
import javax.microedition.lcdui.Display;

import javax.microedition.lcdui._Displayable;
import javax.microedition.lcdui.Font;

import javax.microedition.lcdui.Graphics;

/**
Displays some text "drawn' on a Canvas. Demonstrates the use of
the Graphics text drawing routines.

@see javax.microedition.lcdui.Graphics
*/
public class TextDemo extends Canvas
implements CommandListener

120

public void paint(Graphics g)

{
paintClipRect(g);

int width = getWidth(Q);
int height = getHeight();

g.setFont(Font.getDefaultFont());
g.drawString("'Default”, 5, 30,
Graphics.LEFT | Graphics.BOTTOM);

g.setFont(Font.getFont(Font.FACE_SYSTEM,
Font.STYLE_PLAIN,
Font.SIZE_LARGE));
g-drawString(‘'Large’™, 5, 53,
Graphics.LEFT | Graphics.BOTTOM);

g.setFont(Font.getFont(Font.FACE_MONOSPACE,
Font._.STYLE_ITALIC,
Font.SIZE_MEDIUM));
g-drawString("'Medium', 5, 71,
Graphics.LEFT | Graphics.BOTTOM);

g.setFont(Font.getFont(Font.FACE PROPORTIONAL,
Font.STYLE_UNDERLINED,
Font.SIZE_SMALL));
g.-drawString("Small", 5, 90,
Graphics.LEFT | Graphics.BOTTOM);

g-setFont(Font.getFont(Font.FACE_MONOSPACE,
Font.STYLE_BOLD,
Font.SIZE_MEDIUM));
g.drawString(''v'', width - 10, 20,
Graphics.RIGHT | Graphics.BOTTOM);
g-drawString("'E'", width - 10, 32,
Graphics.RIGHT | Graphics.BOTTOM);
g.drawString("'R", width - 10, 44,
Graphics.RIGHT | Graphics.BOTTOM);
g.drawString("'T", width - 10, 56,
Graphics.RIGHT | Graphics.BOTTOM);
g-drawString('Il', width - 10, 68,
Graphics.RIGHT | Graphics.BOTTOM);
g.drawString(''C'", width - 10, 80,
Graphics.RIGHT | Graphics.BOTTOM);
g-drawString(*'A", width - 10, 92,
Graphics.RIGHT | Graphics.BOTTOM);
g.drawString(*'L", width - 10, 104,
Graphics.RIGHT | Graphics.BOTTOM);

g-drawChar("B", width - 25, 20,
Graphics.RIGHT | Graphics.BOTTOM);
g.drawChar("0", width - 25, 32,
Graphics.RIGHT | Graphics.BOTTOM);
g.drawChar("L", width - 25, 44,
Graphics.RIGHT | Graphics.BOTTOM);
g-drawChar("D", width - 25, 56,
Graphics.RIGHT | Graphics.BOTTOM);

121

,

This demo chooses to space the text strings "Default,” "Large,” "Medium," and "Small" by
positioning the baselines of the bounding rectangles. The text is aso "left-justified.” Notice that
thelogical OR of the horizontal and vertical anchor policies (LEFT | BOTTOM) specify the
anchor position.

Thetwo strings"BOLD" and "VERTICAL" are drawn vertically simply by positioning individual
characters using the drawChar () method. They are offset from the right edge of the display.
Using the RIGHT anchor policy, the code calculates the position of the right edge of the bounding
rectangles by subtracting some number of pixels from the display's rightmost pixel coordinate.

The Graphics API aso defines another constant, VCENTER, that isvalid only for specifying the
vertical anchor policy for positioning images. It isinvalid for text. VCENTER stipulates that the
vertical center of the image should be placed at the (X, y) coordinate point. Y ou'll learn about
image manipulation later in this chapter.

Fonts. Y ou can select afont for any text you draw on a Canvas, as demonstrated in Listing 6.6.
Y ou select afont by specifying three font attributes: the face, style, and size. The
jJavax.microedition. Icdui .Font class defines handy constants for each of these three
categories, shownin Table 6.6.

Table 6.6. Graphics Constants That Define Font Attributes

\Attribute Constant IDescription

lstatic int FACE_MONOSPACE [Face attribute value
static int FACE_PROPORTIONAL Face attribute value
static int FACE_SYSTEM Face attribute value
static int STYLE_BOLD Style attribute value
static int STYLE_ITALIC Style attribute value
static int STYLE_PLAIN Style attribute value
static int STYLE UNDERLINED Style attribute value
static int SIZE_SMALL Size attribute value
static int SIZE_MEDIUM Size attribute value
static int SIZE_LARGE Size attribute value

Y ou should note that the MIDP specification doesn't require implementations to provide all of
these sizes, styles, and faces. The font that is returned will be the closest match to the requested
font that the implementation can manage.

Unlikein AWT and Swing, you don't have the luxury of awhole suite of fonts and a myriad
number of font sizes. Furthermore, because the Font classis declared final and hasno public
constructors, you can't subclass it to define new fonts. The MIDP designers made the choice to
limit available fonts based on device constraints.

Y ou need to obtain areference to avalid Font object in order to passit to the
Graphics.setFont() method. Y ou can get a Font object only by calling either of the two
static factory methods

Font.getFont(int face, int style, int size)
Font.getDefaultFont()

122

The font specified will be used for al subsequent drawing operations until you changeit again. In
Listing 6.6, the graphic's font is changed before drawing the different text strings or characters to
achieve the desired effect.

Clipping

When your application callsthe Display .setCurrent() method, it's requesting that the
implementation display your Displayable. For canvas abjects, the implementation makes your
component the current displayable and calls your classs paint(Graphics g) method. The
implementation generates an internal paint event that is delivered to the current displayable. This
is the reason that the paint() method islisted in Table 6.1 as part of the event handling API
defined by Canvas.

At the time of display, some subset of the display's pixels might be invalid or damaged. An invalid,
or damaged, pixel isone that's visible as aresult of a previous paint operation but should not be
rendered as part of the current paint operation. The display could have been damaged by another
MIDlet or even by an "externa” application—for example, by a native messaging application that
updates the display to indicate the receipt of an SM'S message by your mobile phone.

Before drawing itself, your Canvas isresponsible for erasing any pixels that appear on the screen
that should not be part of itslook. Y ou repair the screen by refreshing invalid pixels.

Y ou undoubtedly noticed the presence of apaintClipRect(Graphics g) methodin Listing
6.3. Listing 6.7 repeats this method. It's the first code called by each application's
paint(Graphics g) method. Its purposeisto erase al of the pixels that were drawn by a
previous paint operation.

Listing 6.7 You must erase all invalid pixels before painting your component. Use
the clip rectangle of your component's graphics object to determine the
rectangular area that contains all of the damaged pixels.

protected void paintClipRect(Graphics @)

{
int clipX = g.-getClipX();
int clipY = g.-getClipY();
int clipH = g.getClipHeight();
int clipW = g.getClipwidth(Q);
int color = g.getColor();

g.-setColor(WHITE);
g-FillRect(clipX, clipY, clipw, clipH);

g-setColor(color);

}

The crux of this method isits use of the Graphics abject's clip rectangle. The clip rectangleis
the rectangular region that contains al of the screen'sinvalid pixels. A clip rectangle is defined by
its (x, y) offset from the Graphics object's origin and by its width and height.

Y ou can obtain the clip rectangle by calling the Graphics methods
int getClipHeight()
int getClipWwidth()

int getClipX()
int getClipY(Q)

123

When your paint(Graphics g) methodis called, the clip rectangle will always represent an
areathat contains al of the display's damaged pixels. In cases like the examples in this chapter,
where you're replacing the display of a screen with a new one, the clip rectangle will represent the
whole display area of the device.

The easiest way to "erase” theinvalid pixelsisto redraw every pixel in the clip rectangle using the
screen's background color, thus ensuring that you erase al damaged pixels. Then, you perform the
drawing operations that define your Canvas using another color.

Noticein Listing 6.7 that the method gets and saves the display's current color, which represents
the pen color used for al drawing operations. The default color isusually black in most
implementations. The code then sets the current color to white (which istypically the background
color) and fills the clip rectangle with white pixels, effectively "erasing” al the damaged pixels.
Finally, the code restores the original color of the Graphics object. Subsequent drawing
operations will render pixelsin some color other than white on a white background.

There are cases in which the clip rectangle might represent some subset of the display. In such
cases, only some subset of the display has been damaged. Y our application could choose simply to
repaint the whole display, but it doesn't have to. It could just as well repaint the damaged area
alone.

The damaged area that needs repairing will be the intersection of the area used by your Canvas
and the clip rectangle. Y ou can determine which of your display's pixels fall within that region by
intersecting the clip rectangle with the area that you know your Canvas uses for its display. The
method

void clipRect(int x, int y, int width, int height)

sets the clip rectangle to be the intersection of the current clip rectangle and the rectangle specified
by the arguments—the region your Canvas uses. Y our application can then calculate which of its
pixelsfal within this new clip rectangle and repaint them.

TheclipRect() cal aways produces asmaller clip rectangle. You can also set theclip
rectangle to any size using the call

setClip(int x, int y, int width, int height)

Your Canvas needs to repaint only the pixels that fall within the intersected region, because the
clip rectangle guarantees to encompass all damaged pixels. Of course, calculating this subset
could be more work than simply repainting the whole Canvas. But painting only the clip
rectangle is useful for applications that use complex or time-consuming processing to calculate
which pixelsto paint.

Ancther common use for clipping is game development. A typical application is acase in which
you want to move a sprite, which is asmall image or icon. Using the clipped region as
demonstrated in Listing 6.7, you paint the background of the area where the sprite is currently
located, and then you paint the spritein its new position.

Actually, on areal device that doesn't support double buffering, the implementation in Listing 6.7
might produce quite noticeable and disturbing flashing of the screen when it's updated. Y ou
probably won't notice any flashing if you're using an emulator, however, because of the speed of
your computer. The "Double Buffering” section later in this chapter shows you how to fix this
problem.

124

Drawing isthe process of changing the state of the Graphics object.
Rendering isthe process of displaying the drawn pixels on the screen.

You can never render outside the clip rectangle. Coor dinates passed to
drawing routines ar e always inter preted relative to the origin of the clip
rectangle. Drawing operations that fall outside the boundaries of theclip
rectangle have no effect on rendering; they don't appear on screen.
Negative valuesfor x and y coor dinates addr ess pixels outside of theclip
rectangle.

Although you can never render outsidetheclip rectangle, you can draw
anywher e, even outside the clip rectangle. You can even draw outside
the bounds of the Graphics object. Oneimplication isthat you can
implement panning or scrolling of an image by changing the x and y
coor dinates of itsorigin when drawing it.

Translation

Asyou aready know, the point (X, y) specifies to adrawing function alocation relative to the
point (0, 0). The point (0, 0) isthe origin of the Graphics. When you first obtain areferenceto
your canvas Graphics, itsorigin, the point (0, 0), always represents the top-left corner of the
device's display (the destination).

To trandlate the origin of aGraphics meansto reposition its origin. After trandation, the origin
of the Graphi cs represents some point other than the top-left pixel on the destination. Y ou
trangdlate the origin of aGraphics using the method

void translate(int x, int y)

The arguments are the coordinates of the point that becomes the new origin of the Graphics
object. The point (0, 0) now refersto this new origin. All drawing operations are now relative to
this new origin. Figure 6.9 shows the display created by the code in Listing 6.8. It simply draws a
filled square on the Canvas.

Figure 6.9. When your Canvas is first created, the origin of its Graphics object,
(0, 0), always refers to the top-left pixel in the device's display (the destination).

125

Clicking the Go button trangdlates the Graphics origin and then redraws the filled rectangle.
Figure 6.10 shows the updated display the first time the Go button is pressed. Notice that the
coordinates passed to the drawing method callsin the paint(Graphics g) method don't
change. The reason is that these coordinates are always relative to the origin of the Graphics,
not to the top-left corner of the device's display area. Drawing operations are always specified
relative to the origin of the Graphics, regardless of the point on the destination it represents.

Figure 6.10. The display after translation. Translation means translating the origin
of the Graphics object, not the destination display.

126

FERS Tuy WIri

Clicking the Go button actually toggles the trangdlation. Clicking the button a second time
tranglates the origin back to the top-left corner of the display.

Listing 6.8 After translation, the coordinates specified to the Graphics drawing
routines don't change, because they are always relative to the origin of the
Graphics context, not the display.

import javax.microedition.lcdui.Canvas;

import javax.microedition.lcdui.Command;

import javax.microedition.lcdui.CommandListener;
import javax.microedition.lcdui.Display;

import javax.microedition.lcdui.Displayable;
import javax.microedition.lcdui.Graphics;

/**

Demonstrates the translation of a Graphics context on a
Canvas.

127

@see javax.microedition.lcdui.Graphics
*/
public class TranslationDemo extends Canvas
implements CommandListener
{
private final int WHITE =
OXFF << 16 | OxFF << 8 | OxFF;

private GraphicsDemo gDemo = GraphicsDemo.getlnstance();
private Display display = Display.getDisplay(gDemo);

private static Command back =
new Command(‘'‘Back', Command.BACK, 1);

private static Command go =
new Command(*'Go", Command.SCREEN, 1);

private static final int ORIGINAL_STATE

= 1;
private static final int TRANSLATED STATE =

_1;

// The x coordinate of the initial drawing.
private int x = 20;

// The y coordinate of the initial drawing.
private int y = 20;

// The translation amount in the x direction.
private int deltaX = 30;

// The translation amount in the y direction.
private int deltaY = 30;

// State variable that tells the program if the drawing
// on-screen is in the original position or the

// translated position.

private int state = ORIGINAL_STATE;

/**
Constructor.

*/

public TranslationDemo()

{
super();
addCommand(back) ;
addCommand(go) ;
setCommandListener(this);
display.setCurrent(this);

}

protected void paintClipRect(Graphics @)
{

int clipX = g.getClipX(Q);

int clipY = g.getClipY();

int clipH = g.getClipHeight();

int clipW = g.getClipWidth();

int color = g.getColor();

g.setColor(WHITE);
g-FillRect(clipX, clipY, clipW, clipH);

128

g-setColor(color);

}

public void paint(Graphics g)
.
int

w 50;
int h

50;

paintClipRect(g);
g-fillRect(x, y, w, h);
b

// Toggle the state of the drawing. This method is
// called during processing of the "Go'" command, which
// toggles the translation.

private void toggleState()

{
}

// Toggles the translation. Redraws the Canvas.
private void toggleTranslation()

state = -state;

if (state == ORIGINAL_STATE)

{
X = x + deltaX;
y =y + deltaY;
}
else
{
X = x - deltaX;
y =y - deltaY;
toggleState();

// Request the implementation to call the paint()
// method to repaint the canvas. This results in
// the generation of an internal paint event that
// is handled by the implementation.
repaint();

public void commandAction(Command c, Displayable d)
{
if (c == back)
GraphicsDemo.getlnstance() .display();

else if (c == go)
{

}

toggleTranslation();

}
}

Asyou learned in the previous section, you can draw outside the bounds of the Graphics object;
such drawing won't be rendered on screen, however. But after performing off-screen drawing, you
can trandate the Graphics in order to view previous off-screen drawing.

How Components Are Painted

129

Y ou may have noticed that the toggleTranslation() method in Listing 6.8 calls
Canvas.repaint(). Thiscall requests that the implementation repaint the display.

The Canvas.repaint() cal resultsin an internal implementation event that represents the
refresh request. The implementation handles the event internally. It schedules a call to the canvas's
paint() method, which is executed by the implementation, not by your program.

A Canvas needs to be painted to render all the bits drawn in its context, or to repair damaged
pixels. You should never call paint() directly, however. Whenever you wish to redraw your
Canvas, you should issue acall to repaint(). Alternatively, you can call the following
overloaded version that is aso defined in the Canvas class:

void repaint(int x, int y, int width, int height)
This version requests a repaint of the rectangular region defined by the parametersin the call.

Notice that you still must repair the damaged pixels before you issue a
call torepaint the Canvas. Thisrequirement isdifferent from the
requirementsof AWT or Swing applications. In AWT and Swing, a call
to repaint() doestwo things: It first callsupdate() and then calls
paint(Graphics g). Thecall toupdate() causesthe
implementation to erasethe Panel, Canvas, or JComponent. Thereis
no such call in MIDP, so you must repair the damaged pixels your self.
Noticein Listing 6.8 that the paint(Graphics g) method till calls
the paintClipRect(Graphics g) method.

Double Buffering

The term doubl e buffering refers to a technique for buffering a graphics context before displaying
it. Theidiom requires that you use two graphics contexts—or buffers—hence its name.

You first draw graphicsin asecondary graphics context, and later copy its contents to the graphics
context that represents the device's display. This secondary graphics context is called an off-screen
buffer. An off-screen buffer is one that doesn't render to the display.

The motivation for this technique is performance. Drawing operations can result in frequent
updates to the display, causing the user to perceive display flicker. To avoid flicker, you first
perform your drawing to an off-screen graphics context, then copy the whole off-screen graphics
context to the original device graphics. A copy operation is usually faster than the multitude of
drawing operations required of even arelatively complex canvas, so it can be done with almost no
perceptible flicker.

Listing 6.9 demonstrates the use of double buffering. It performs some simple drawing functions
in an off-screen buffer, then copies the contents of that buffer to the primary graphics context that
represents the device's display. Although the drawing routines in this example are relatively
simple, areal-life application might perform much more complicated drawing, truly warranting
the need for double buffering.

Listing 6.9 Double buffering uses two graphics contexts. The only way to obtain a
second graphics context in MIDP is through the Image class.

import javax.microedition.lcdui.Canvas;
import javax.microedition.lcdui.Command;

130

import javax.microedition. lcdui.CommandListener;
import javax.microedition.lcdui.Display;

import javax.microedition.lcdui._Displayable;
import javax.microedition.lcdui.Graphics;

import javax.microedition.lcdui.lImage;

import java.io.lOException;

/**
Demonstrates double buffering of graphics context for
display on a Canvas.
*/
public class DoubleBufferDemo extends Canvas
implements CommandListener
{
// A constant that represents the color white.
private static final int WHITE =
OXFF << 16 | OXFF << 8 | OxFF;

private static Command back =
new Command(‘'Back', Command.BACK, 1);

GraphicsDemo gbDemo = GraphicsDemo.getlnstance();
private Display display = Display.getDisplay(gDemo);

// The image object to use to obtain an off-screen
// Graphics object.
private Image offscreen;

// A variable used for determining if the implementation
// is automatically double buffered. Holds the value
// true if the implementation automatically does double
// buffering, false otherwise.

private boolean autoDoubleBuffered = true;

/**
No-arg constructor.
*/
public DoubleBufferDemo()
{
super();
addCommand (back) ;
setCommandListener(this);
display.setCurrent(this);

if (lisDoubleBuffered())
{
// 1T the implementation doesn®t automatically
// use double buffering, get an Image so we
// can get an off-screen Graphics from it.
// This Image is mutable! Its dimensions are the
// width and height of this Canvas.
offscreen = Image.createlmage(getWidth(), getHeight());
autoDoubleBuffered = false;

}
}
protected void paintClipRect(Graphics Q@)
{

int clipX = g.getClipX(Q);

int clipY = g.getClipY(Q);

131

int clipH
int clipW

g.-getClipHeight();
g-getClipwidth(Q;

int color = g.getColor();
g.-setColor(WHITE);
g-FillRect(clipX, clipY, clipW, clipH);

g-setColor(color);

public void paint(Graphics g)
{
Graphics originalG = null;
int width = getWidth(Q);
int height = getHeight();

if (lautoDoubleBuffered)

{
// Save original graphics context and get a new
// off-screen Graphics from the utility Image.
originalG = g;
g = offscreen.getGraphics();

// Clear the clip rectangle using the new Graphics
// object. This way we"re using double buffering
// to clear the Canvas, thereby avoiding
// Tlickering. Clearing the Canvas is drawing
// like all other drawing operations.
paintClipRect(g);

}

else

// Clear the Canvas with the original graphics
// because the implementation does double

// buffering automatically.

paintClipRect(g);

}
for (int x =0, vy =0; (X <width /7 2); x = x + 2)

g.drawRect(x, y, (width - x) - x, (height - y) - y);
yt+; y++g

}

// Drawing the image actually copies the contents of
// the image®s off-screen Graphics context to the

// device"s Graphics context.

if (lautoDoubleBuffered)

{

originalG.drawlmage(offscreen, 0, O,
Graphics.TOP | Graphics.LEFT);
}

}

public void commandAction(Command c, Displayable d)

if (c == back)

{
GraphicsDemo.getlnstance() .display();

}
}

132

}

The constructor contains the first code related to double buffering. The statement below, taken
from the Doub 1eBufferDemo no-argument constructor, determines whether the implementation
automatically supports double buffering.

it (VisDoubleBuffered())

{
offscreen = Image.createlmage(getWidth(), getHeight());

autoDoubleBuffered = false;

}

If the implementation does support double buffering, the application doesn't need to execute it.
The Canvas. isDoubleBuffered() method tells you whether the implementation does double
buffering implicitly. Notice the construction of the Image aobject. This call to

Image . createlmage () produces a mutable Image object. The application needs a mutable
Image becauseit will perform its drawing in the Image object's Graphics context, which isthe
off-screen buffer we need. Thisisthe only way to obtain an additional Graphics in MIDP.

The paint() method contains the rest of the double-buffering code. If there is no automatic
double buffering, the application must perform it. This requires a second graphics context. The
following fragment from the paint() method demonstrates the idiom.

public void paint(Graphics g)
{

iT (lautoDoubleBuffered)
{

originalG = g;
g = offscreen.getCGraphics();
}

else

paintClipRect(g);
}

L

A temporary variable saves areference to the original Graphi cs object, which represents the
device's graphics context. The new graphics context is obtained through the Image object
constructed earlier. ThisGraphics isassociated with the Image. This sequence of eventsis
represented schematically in Figure 6.11.

Figure 6.11. The left side represents the state upon first entering the paint
method. The right side represents the state after the off-screen Graphics context
is obtained. A reference saves the original Graphics context. The color coding
indicates that the off-screen Graphics context is associated with the image
object.

133

originalg —
Graphics

originalG="
g J
‘:l> g ’\»

Graphics

5 Image

offscreen

offscreen ——— Image

Now the paint(Graphics g) method performsits drawing operations to the off-screen
Graphics context. When it's done, it copies the contents of the off-screen Graphics to the
original Graphics context, which results in rendering to the display. The copy operation is done
by the call to the Graphics.drawlmage () method. This method says, in effect, "Copy the
contents of thisimage argument's graphics context to me.”

The MIDP double buffering mechanism differs from Swing's double buffering. In Swing, you can
double-buffer drawing operations on any Component, not just Canvas objects. Swing
applications cal java.awt.Component.getGraphics() to obtain an off-screen graphics
context. The application can draw in this context. It then sets this off-screen graphics context to be
the one associated with the native device.

MIDP has no such call. The only reference to a Graphics object that's associated with the native
deviceisthe one passed to the paint(Graphics g) method of aCanvas.

Image Display Using a Canvas

Y ou already know from chapter 5 that several MIDP high-level Ul components have the ability to
display images, for example as part of aniteminaChoice-ChoiceGroup. Canvas objects can
display images, too. Besides drawing basic geometric graphics, a Canvas object can "draw" an
image using the same Graphics context that it uses for low-level drawing functions. MIDP
supports only the PNG image format.

Figure 6.12 shows an image displayed in aCanvas. Listing 6.10 shows the program source that
creates Figure 6.12. The structure of the program is similar to the other Canvas demosin this
chapter.

134

Figure 6.12. A Canvas can display an image by "drawing" the image, which
actually draws the image into the image object's Graphics context.

Listing 6.10 To display an image, a Canvas simply "draws" the image object using

[} DefaultColorPha

JEL

the image-drawing routine of its Graphics object.

import javax.
import javax.
import javax.
import javax.
import javax.
import javax.
import javax.

microedition.
microedition.
microedition.
microedition.
microedition.
microedition.
microedition.

Icdui
Icdui
Icdui
Icdui
Icdui
Icdui
Icdui

import java.io.lOException;

/**

Demonstrates double buffering of images on a Canvas.

.Canvas;
.Command;
.CommandListener;
.Display;
.Displayable;
-.Graphics;
-Image;

135

=101 x|

Images are automatically double buffered. This program
demonstrates that you don"t have to do anything to get
double buffered behavior when displaying images.

However, you still have to double buffer the operation
that paints the background of the Canvas before
painting the image.
*/
public class DoubleBufferlimageDemo extends Canvas
implements CommandListener
{
// A constant that represents the color white.
private static final int WHITE = OxFF << 16 | OxFF << 8 | OxFF;

private static Command back = new Command(''Back', Command.BACK, 1);

private GraphicsDemo gDemo = GraphicsDemo.getlnstance();
private Display display = Display.getDisplay(gDemo);

// A reference to the Image this object displays.
Image image;

// A variable used for determining if the implementation
// is automatically double buffered. Holds the value
// "true 1T the implementation automatically does

// double buffering, "false" otherwise.

private boolean autoDoubleBuffered = true;

[
. No-arg constructor.
pﬁblic DoubleBufferiImageDemo()
{ super();

if (lisDoubleBuffered())

i autoDoubleBuffered = false;

// Create the PNG image. The image is "drawn' in an
// immutable Image object, which has its own

// off-screen Graphics. We create the image here in
// the constructor, instead of in the paint() method,
// so that it"s created only once.

try

{
image = Image.createlmage(’'/bottle80x80.png™);

catch (10Exception ioe)

{
System.out.printIn(ioe.getMessage());

ioe._printStackTrace();

}

addCommand(back) ;
setCommandListener(this);
display.setCurrent(this);

}

protected void paintClipRect(Graphics @)
{

136

int clipX = g.getClipX();

int clipY = g.getClipY(Q);
int clipH = g.getClipHeight();
int clipW = g.getClipWidth();

int color = g.getColor();
g.-setColor(WHITE);
g-FillRect(clipX, clipY, clipW, clipH);

g.-setColor(color);

}

/**

Paints an image on this object"s visible Canvas.
*/
public void paint(Graphics g)
{

Graphics originalG = null;

int width = getWidth(Q);

int height = getHeight();

if (image == null)
{

}

// We still need to double buffer the drawing

// operations that clear the Canvas graphics.

if (lautoDoubleBuffered)

{
// Save the original graphics context and use the
// off-screen Graphics from the Image to clear the
// clip rectangle.
originalG = g;
g = image.getGraphics();
paintClipRect(g);

}

else

{
// Paint the background with the original Graphics
// passed in.
paintClipRect(g);

}

// We don"t need to double buffer the call to display
// the Image. This method call draws the image in the
// Image object"s off-screen Graphics, then copies its
// contents to the device Graphics context implicitly.
g-drawlmage(image, 0, 0, Graphics.TOP | Graphics.LEFT);

}

public void commandAction(Command c, Displayable d)

return;

if (c == back)

{
GraphicsDemo.getlnstance() .display();

}

}
}

137

The procedure is rather straightforward. Y ou must first create the image object as you did when
passing an image to a MIDP high-level Ul component. The program calls
Image.createlmage(String name) to create an Image object. This method locates the
image file whose path name is specified relative to the res/ directory of the project.

Y ou then pass the image to the Graphi cs object, specifying the anchor point and the (x, y)
location of that anchor point. Next, the program simply callsthe Graphics.drawlmage()
method to display the image. The Graphics object is the one that the MIDP implementation
passes to the application's paint(Graphics g) method. It represents the device's physical
graphics context. That is, executing the Graphics.drawlmage() onthe Graphics context
passed to your Canvas. paint(Graphics g) method resultsin rendering to the device's

display.

The Image class has four overloaded versions of the create Image () method. Table 6.7 shows
all four versions. Y ou've aready seen the third version; it's the only one that produces a mutable
image object. Y ou needed this to write to an Image object's off-screen Graphics context.

The other versions produce immutable Image objects. Each version enables you to construct an
image from a different source. The first version creates an image from raw binary data. The
second creates an image from another image object. The fourth version loads an image from the
MIDlet suite JAR file. The string argument specifies the name of the resource file in the JAR file.

Table 6-7. Image Class Methods for Creating Image Objects

Image Method Name Description

static Image Creates an immutable image from the specified
createlmage(byte[] image data, taking image data starting at the
imageData, specified offset and length.

int imageOffset,
int imagelLength)

static Image Creates an immutable copy of the specified image.

createlmage(Image source)

static Image Creates a new mutable image with the specified

createlmage(int width, width and height.

int height)

static Image) Creates an immutable image object from the image

createlmage(String name) with the resource path specified in the MIDlet suite's
JAR file.

Listing 6.10 demonstrates the display of an actual PNG image. Besides drawing real images—
pictures stored as PNG formatted images—you can draw any “image” that you can create with the
low-level graphics drawing routines provided in the Graphics class. Y ou can draw geometric
shapes or individual pixels, fill portions of the display, and so forth, to create the image—the
picture—you want.

Double Buffering I mages. Images are double-buffered implicitly. Therefore, you never have to
do the double buffering yourself. The examplein Listing 6.10 reveals the reason.

The paint() method creates an Image object from aresource file that represents the PNG
image to display. But this Image object aready has an associated Graphics context, which isan
off-screen Graphics. Therefore, when the paint() method executes the following statement,
it's copying the contents of the Image object's Graphics context—the actual bits that comprise
the image—to the display graphics context:

g-drawlmage(image, 0, 0, Graphics.TOP | Graphics.LEFT);

138

Thus, double buffering of images occurs automatically.

Although the drawing of the actual image is automatically double buffered, the clearing of the clip
rectangle—that is, the drawing of the Canvas background—is not. Look closely at the
paint(Graphics g) methodin Listing 6.10, and you'll seethat it still checksto see whether
the implementation does automatic double buffering. If it doesn't, the paint(Graphics g)
method uses an off-screen graphics context to clear the clip rectangle.

This code is dlightly different than Listing 6.9; there's no explicit reference to an off-screen
Graphics inthe code. Thereason is that the Image object aready supplies the off-screen
graphics. The paint(Graphics g) method can simply use it as the off-screen Graphics
needed to clear the clip rectangle.

Chapter Summary

Two classesin the javax.microedition. Icdui package make up the definition of the MIDP
low-level API: the Graphics classand the Canvas class. The MIDP low-level API enables your
application to obtain information about low-level events that aren't available to the high-level API
components. Canvas objects can obtain information on keystroke events and pointer motion
events. Canvas objects are Displayab I e objects. For this reason, they can till perform
command processing like other Displayable components.

To use the low-level API, you must create a subclass of Canvas. Y ou must then definea
paint(Graphics g) method inyour subclassin order to produce the visible look of its
instances. The subclasss paint(Graphics g) method definesits visible look.

Thepaint(Graphics g) method drawsthe Canvas component's look using a graphics
context, defined by the Graphics class. The Graphics class supports drawing and filling basic
geometric shapes such aslines, arcs, rectangles, text and so forth. It also supports drawing in color.
Other features supported are font selection for text drawing and clipping and trandation of the
Graphics origin.

Canvas objects can aso display images with the help of the Graphics class functionality.
Applications load images from files, which must be stored in PNG format.

Double buffering is atechnique that improves drawing performance on resource-constrained
devices. Applications use two graphics contexts. The application first draws into an off-screen
buffer and then copies the contents of this buffer to the graphics context associated with the device
display, rendering the look of the Canvas component. Image drawing is double buffered
automatically.

139

Chapter 7. Persistent Storage Support in MIDP

Device Support for Persistent Storage
RMS Data Storage Model

Records

An Example Application

Real world applications produce data that needs to be saved, or persisted, and used subsequently
by the same or another program. This chapter teaches you how to use the MIDP persistence API.

The MIDP supports persistence of application data through its Record Management System
(RMS). The javax.microedition. rms package defines the persistence APIs that comprise
this package.

Device Support for Persistent Storage

Each MIDP-compliant device maintains a dedicated area of device memory for persistent
application data storage. MIDlet data stored here persists across multiple invocations of the
applications that use it. Both the physical location and the size of the data store are device
dependent.

The RMS API abstracts the device-dependent details of the storage area and access to those details,
and it provides a uniform mechanism to create, destroy, and modify data. This ensures portability
of MIDlets to different devices.

RMS Data Storage Model

The RM S supports the creation and management of multiple record stores, shownin Figure 7.1. A
record store is a database whose central abstraction isthe record. Each record store consists of
Zero or more records. A record store name is case sensitive and can consist of a maximum of 32
Unicode characters. A record storeis created by a MIDlet.

Figure 7.1. The RMS consists of one or more record stores, each containing zero
or more records that are arrays of bytes.

140

“fag"

MIDlet
suite Record stores <record 1=
1
"oo" <record 2= “har"
<record 1=
"bar" <record N>
=record M=
"foo"
MIDlet
suite Record stores <record 1>
2
"foo" <record 2= “bar"
"az" <record 1>
<record M= <record 2>

<racord M=

MIDlets within the same MIDlet suite can share one another's record stores. A MIDlet suite
defines a name space for record stores; arecord store must have a unique name within aMIDl et
suite. The same name can be used in different MIDlet suites, however.

MIDlets can list the names of al the record stores available to them. They can also determine the
amount of free space available for storing data.

Incidentally, you should be aware that when al MIDletsin a MIDlet suite are removed from a
device, the device AM S removes al record stores in the MIDlet suite namespace. All persistent
datawill be lost. For this reason, you should consider designing applications to include awarning
or confirmation that requires users to acknowledge that they understand the potential 1oss of data
when they remove applications. Applications might also include a mechanism to back up the
records in a data store to another location. This might require server side support, atopic which |
will discussin chapter 11.

The RM S defines the following conceptual operations on an individual record store:

Add arecord.

Delete arecord.

Change arecord.

Look up (retrieve) arecord.
Enumerate al records.

Records are uniquely identified by arecord ID, which is the only primary key type supported. The
type of all record idsisthe Javabuilt-in type int. The RMS has no support for features—such as
tables, rows, columns, data types, and so forth—that are present in relational databases.

141

Records

A record isabyte array of type byte []. The RMS doesn't support the definition or formatting
of fields within arecord. Y our application must define the data el ements within arecord and their
format.

The reader of arecord, therefore, must be aware of the format that was used to write the record.
Because arecord is simply a byte array, applications must convert data from arbitrary typesto
bytes when writing records, and they must convert from bytes to those types upon reading the data.

An Example Application

Therest of this chapter covers the details of the RMS by following an example that uses the core
features of the RMS. The example is a simple address book that stores names and phone numbers.

Much of the example deals with creating the organization and structure of the MIDP application.
Most of the actual RM S operations are confined to one class. From this example, you can see how
to include the use of persistence in an application that you are likely to find on areal mobile
device.

Of course, you can obtain and execute the source code in this chapter to get afeeling for how the
application progresses through the various screens. I'll leave that to you instead of showing you
captures of all the screens.

The following files comprise this address book example:

AddScreen.java
AddressBook.java
AddressBookMain.java
DeleteAllConfirmationScreen.java
PersistenceDemo.java
RecordList.java
SearchResultScreen.java
SearchScreen.java

The full listings of these files can be found on the Prentice-Hall Web site at http://www.phptr.com.
The PersistenceDemo.javafile defines the MIDl et that presents a menu containing the address
book application. The AddressBookMain.javafile defines the entry point of the address book
application.

Listing 7.1 shows the full source code of the AddressBook.java class. This class abstracts the
details of the RMS API calls from the rest of the MIDlet. When the MIDlet isinitialized, it creates
an instance of the AddressBook class, which, in turn, opens the record store whose nameis
address-book

Listing 7.1 The AddressBook class abstracts the application's access to the
record store.

import javax.microedition.rms._.RecordComparator;
import javax.microedition.rms._.RecordEnumeration;
import javax.microedition.rms.RecordFilter;
import javax.microedition.rms.RecordStore;

142

http://www.phptr.com/

import javax.microedition.rms.RecordStoreException;

import javax.microedition.rms.RecordStoreNotOpenException;
import java.io.ByteArraylnputStream;

import java.io.ByteArrayOutputStream;

import java.io.DatalnputStream;

import java.io.DataOutputStream;

import java.io.lOException;

/**
This class implements a simple address book for
demonstration purposes. It stores records consisting
of a String name and a String phone number field. This
class defines two inner classes, one record comparator
and one record filter for use iIn retrieving records.

*/

public class AddressBook

{
private static final String RECORD_STORE_NAME =

"address-book™;

private RecordStore recordStore;

public AddressBook() throws RecordStoreException

{
super();
recordStore =
RecordStore.openRecordStore(RECORD _STORE_NAME, true);

}

void close() throws RecordStoreException

try
{

}

catch (RecordStoreNotOpenException rsno)
{

}
}

/**
Gets the record store used by this object.

recordStore.closeRecordStore();

@return a reference to the RecordStore used by this object.
*
/
public RecordStore getRecordStore()

{
return recordStore;

}

/**
Adds the specified record to this address book"s
record store.
@param name the name of the entry being added.
@param phone the phone number for the entry being
added.
@throws RecordStoreException if there is a problem
adding the record.

*/

143

public void addRecord(String name, String phone)
throws RecordStoreException
{

ByteArrayOutputStream baos = new ByteArrayOutputStream();
DataOutputStream dos = new DataOutputStream(baos);

try

{
dos.writeUTF(name);
dos.writeUTF(phone);

}
catch (10Exception ioe)

{
ioe_printStackTrace();

int id = recordStore.addRecord(baos.toByteArray(), O,
baos.toByteArray().length);
System.out.printIn(*'Record id = " + id);
}

/**
A RecordEnumerator that orders records by
lexicographic ordering of the name field of the
record.
*/
RecordEnumeration getMatchesByName(String matchKey)
throws RecordStoreNotOpenException

MatchAl INamesFilter filter = new MatchAlINamesFilter(matchKey);
AlphabeticalOrdering comparator = new AlphabeticalOrdering();
return recordStore.enumerateRecords(filter, comparator, false);

}

/**
A RecordFilter that identifies a match if the
candidate name (the first field in the candidate
record) 1) exactly matches the name of an enumeration
element, or 2) if the enumeration element name string
begins with the candidate name. Returns true if
there is a match, false otherwise.

*/

class MatchAlINamesFilter implements RecordFilter

{

String requestString;

public MatchAlINamesFilter(String matchKey)

{
requestString = matchKey;
}
public boolean matches(byte[] candidate)
{

ByteArraylnputStream bais = new ByteArraylnputStream(candidate);
DatalnputStream dis = new DatalnputStream(bais);
String name = null;

try

{
name = dis.readUTF(Q);

if (name.indexOf(requestString) == 0)
return true;

144

}
}

/**

*
/
class AlphabeticalOrdering implements RecordComparator
{ /**
Constructor.
*/
public AlphabeticalOrdering()
{
}
public int compare(byte[] recl, byte[] rec2)
{
ByteArraylnputStream baisl = new ByteArraylnputStream(recl);
DatalnputStream disl = new DatalnputStream(baisl);
ByteArraylnputStream bais2 = new ByteArraylnputStream(rec2);
DatalnputStream dis2 = new DatalnputStream(bais2);
String namel = null;
String name2 = null;
try
{
namel = disl.readUTFQ);
name2 = dis2.readUTFQ);
catch (10Exception ioe)
{
ioe._printStackTrace();
}
if (namel == null || name2 == null)
return O;
int result = namel.compareTo(name2);
if (result < 0)
return RecordComparator.PRECEDES;
else if (result == 0)
return RecordComparator . EQUIVALENT;
else
return RecordComparator.FOLLOWS;
}
}
/**

else
return false;

catch (10Exception ioe)
{

ioe.printStackTrace();

}

return true;

This inner class implements a RecordComparator whose
policy it is to do alphabetic ordering.

Deletes all records in the data store. With current
implementations, a faster way to delete all records
may be to remove the data store and recreate it,

145

rather than deleting each record one at a time!
*/
void deleteAllRecords()

{
try

RecordEnumeration re =
recordStore.enumerateRecords(null, null, false);
while (re.hasNextElement())

{
int id = re.nextRecordld();

recordStore.deleteRecord(id);

}

catch (RecordStoreException rse)

{

}
}

/**
Gets the statistics of the record store used by this
address book.

rse.printStackTrace();

@return a String of statistics data.
*/
public String getStatistics()
{

int numRecords = O;
int space = 0;
StringBuffer stats = new StringBuffer('Records: ");

try

numRecords = recordStore.getNumRecords();
space = recordStore.getSizeAvailable();

catch (RecordStoreException rse)

{

rse.printStackTrace();

}

stats.append(String.valueOf(numRecords));
stats.append(*'\n\n"");
stats.append("Available bytes: ");
stats.append(String.valueOf(space));

return stats.toString();
}

Notice that the AddressBook class defines a member of type RecordStore. Thisisthe
instance of the actual record store used by the application. The RecordStore classisthe only
publicly defined classin the RM S package. It defines the record store abstraction.

The AddressBook constructor throws RecordStoreException because the
openRecordStore() method can throw three exceptions that derive from it. The

Javax.microedition. rms package defines five exceptions. Figure 7.2 shows the inheritance

hierarchy that contains the RM S exception types.

146

Figure 7.2. The RMS package defines several exceptions related to accessing a
data store. All exceptions belong to the Javax.microedition.rms package
unless otherwise indicated.

java.lang.Exception

!

javax.microedition.rms.RecordStoreException

InvalidRecordIDException / \ RecordStoreNotOpenException

RecordStoreFullException RecordStoreNotFoundException

The AddressBook class provides the following methods, which support the application level
functions performed on the data store.

void addRecord(String name, String phone)

void deleteAllRecords()

String getStatistics()

RecordEnumeration getAllRecords(String matchKey)

A real-world implementation of this application would need to provide a more comprehensive set
of methods to compl ete this interface. Nevertheless, this set is suitable for the purpose of
demonstrating the concepts related to the use of the MIDP RMS.

Manipulating byte[] Data

As mentioned previoudly, this example application manipulates records that consist of a name and
a phone number. The user enters both names and phone numbers as Str i ng objects because the
data-entry screen uses instances of the TextField classthat you saw earlier in chapter 5.
Accordingly, the addRecord () method takes these String values and converts them to bytes.

Somehow, these values must be converted to a single byte array before being added to the record
store. The reason you must perform this conversion is simply that the RecordStore API only
stores records as a single-byte array.

The addRecord() method uses the standard Java |O idiom of building aDatalnputStream,
which supports writing Java built-in types to an output stream. The resulting byte array is then
added to the RecordStore object.

TheRecordStore.addRecord() method returns an int, which represents the value of the
record id for the record just added. Y our application can save thisid and use it when retrieving the
record later. But there's a better way to retrieve records.

Enumerations

There are really two ways to retrieve records from a data store:

147

e Retrieve anindividual record using its unique record id.
e Retrieve an enumeration of the records and pick the one or ones in which you're
interested.

To retrieve a specific record, you can use the following method of the RecordStore class.
byte[] getRecord(int recordld)

This method obviously requires that you know the uniqueid for the record you want.
Unfortunately, this means you probably have to keep the id handy somewhere after it has been
returned to you by the addRecord () method. Thisis not always convenient or practical for large
numbers of records.

An easier way to find records in which you're interested is to use enumerations, which are
supported by the RecordStore class. An enumeration is a convenient way to retrieve records
when you don't know the ids of the records you want. Y ou can create an enumeration of the
records in the record store, and then examine them, selecting the one or ones you want.

The RecordStore class defines the method

RecordEnumeration

enumerateRecords(RecordFilter filter,
RecordComparator comparator,
boolean keepUpdated)

which returns an enumeration of the records in arecord store. Listing 7.2 shows the
RecordList.java source. This class builds and displays alist of al recordsin the address book.
Notice that it doesn't specify any record idsin order to fetch the records.

Listing 7.2 Enumerations enable you to access records without knowing their
record IDs.

import javax.microedition.midlet_MIDlet;

import javax.microedition.lcdui.Alert;

import javax.microedition.lcdui.AlertType;
import javax.microedition.lcdui.Command;

import javax.microedition.lcdui.CommandListener;
import javax.microedition.lcdui.Display;

import javax.microedition.lcdui.Displayable;
import javax.microedition.lcdui.List;

import javax.microedition.rms.RecordEnumeration;
import javax.microedition.rms.RecordStore;
import javax.microedition.rms.RecordStoreException;

import java.io.ByteArraylnputStream;
import java.io.DatalnputStream;
import java.io.lOException;

/**
This class is a Ul component that displays a list of
records found in the record store. It uses the
AddressBook object defined by the MIDlet class for this
MIDlet application.

@see AddressBook

148

@see AddressBookMain

*/

public class RecordList extends List
implements CommandListener

{

private static Command go = new Command(''Go'", Command.SCREEN, 1);
private static Command back = new Command(*‘Back', Command.BACK, 1);

private Display display;
private static RecordList instance;

/**
Constructor.

@param title the title of the Ul screen, which is a
List.
*/
public RecordList(String title)
{
super(title, List.IMPLICIT);
instance = this;
PersistenceDemo pDemo = PersistenceDemo.getlnstance();
display = Display.getDisplay(pDemo);

addCommand(back) ;
setCommandListener(this);

if (buildRecordList() <= 0)
setTitle("'No records found™);

/**
Returns the single instance of this class. Calling
this method before constructing an object will return
a null pointer.

@return an instance of this class.
*/
public static RecordList getlnstance()

{

}
void display(Q)
{

return instance;

display.setCurrent(this);
}

/**
Builds a list of the records in the record store.
Returns the number of records found. This method
retrieves all records from the record store; that is,
it uses no filters to retrieve records. Neither does
it use any record comparators, so it doesn"t order
the records returned.

<p>This method throws no exceptions, but catches any
exceptions that occur accessing the record store.

@return the number of records found in the record

149

store, or O if no records are found.
*/
int buildRecordList()
{
AddressBook addressBook =
AddressBookMain.getlnstance() .getAddressBook();
RecordStore recordStore = addressBook.getRecordStore();

int numRecords = 0;
try

RecordEnumeration re;

re = recordStore.enumerateRecords(null,
null,
false);
if (re.numRecords() > 0)
{
ByteArraylnputStream bais = null;
DatalnputStream dis = null;
String name = null;
while (re.hasNextElement())
{

byte[] record = re.nextRecord();

bais = new ByteArraylnputStream(record);
dis = new DatalnputStream(bais);

String strRec = new String(record);
name = dis.readUTF(Q);
append(name, null);
numRecords++;
}

}

else
{
Alert a = new Alert(*'No records",
"No records found in record store",
null,
AlertType.CONFIRMATION) ;
a.setTimeout(Alert.FOREVER);
display.setCurrent(a, AddressBookMain.getlnstance());

}

catch (RecordStoreException re)
{

re.printStackTrace();

Alert a = new Alert("Error retrieving record",
"Error retrieving record.",
null,
AlertType.CONFIRMATION) ;

a.setTimeout(Alert.FOREVER);

display.setCurrent(a, this);

catch (10Exception ioe)
{

3
finally

{

ioe.printStackTrace();

return numRecords;

150

}
}

public void commandAction(Command c, Displayable d)

{
iT (c == back)

AddressBookMain.getlnstance() -display();

}
}
}

Thebui IdRecordList() method uses an enumeration to obtain all the recordsin the record
store and then extract the name field from each to build alist of al names. The cal to
enumerateRecords() returnsaRecordEnumeration containing al the records. Using the
hasNextRecord() and nextRecord() methods, thewhi le loop simply extracts the name
from each record and appendsit to aL i st object for display.

For each record, you must decode the byte array in the opposite manner from which you wrote the
record originally. You know that the first element isa String, the name, so you can convert from
bytesto a String. Notice that the same Java O stream idiom is used here to build a
DatalnputStream that supports an API for easy conversion to Java built-in types.

Record Filters

The foregoing example didn't really search for any particular records. Thereis away, however, in
which you can use enumerations to retrieve some subset of the records in the record store. Y ou
can use enumerations to return records that satisfy some criteria you specify.

Thefirst argument in the enumerateRecords () method specifiesarecord filter. A filter isan
object that defines the semantics for matching a record with a set of criteriathat determine
whether the record should be included as part of the enumeration set.

A record filter isaclass that implements the RecordFi I ter interface, which is defined in the
Jjavax.microedition.rms package. Thisinterface defines asingle method, boolean
matches(byte[] candidate). Your RecordFi I ter subclass defines this method and
identifies criteriafor filtering records from an enumeration of al records in the record store. The
enumerateRecords() method invokes your implementation on each record retrieved from the
record store.

Listing 7.3 shows the code for the SearchScreen.java class. It searches for records that begin with
the substring entered by the user or that equal the user-specified string.

Listing 7.3 The desired search for names that begin with the substring entered by
the user uses the APl in the AddressBook class that defines these search
semantics.

import javax.microedition.lcdui.Command;

import javax.microedition.lcdui.CommandListener;
import javax.microedition.lcdui.Display;

import javax.microedition.lcdui.Displayable;
import javax.microedition.lcdui.Form;

import javax.microedition.lcdui.TextField;

import javax.microedition.rms.RecordEnumeration;
import javax.microedition.rms.RecordStoreException;

151

im
im

port java.util.Enumeration;
port java.util_Vector;

/**

*/
pu

{

This class implements the screen that enables the user
to search for one or more particular records in the
address book. The user enters a name or prefix that
represents the name of one or more records in the
address book.

blic class SearchScreen extends Form
implements CommandListener

private static Command go = new Command(''Go'", Command.SCREEN, 1);
private static Command back = new Command('‘Back', Command.BACK, 1);

private static SearchScreen instance;
private Display display;

private AddressBookMain addressBook;
private TextField keyEntry;

/**
Constructor.
*/
public SearchScreen()
{
super(‘'Search for entry');
instance = this;
PersistenceDemo pDemo = PersistenceDemo.getlinstance();
display = Display.getDisplay(pDemo);
addressBook = AddressBookMain.getlnstance();

keyEntry = new TextField("'Enter name",

null,
20,
TextField.ANY);
append(keyEntry);
addCommand(go) ;
addCommand(back) ;
setCommandListener(this);
}
/**
Returns the single instance of this class. Calling
this method before constructing an object will return
a null pointer.
@return an instance of this class.
*/
public static SearchScreen getlnstance()
{
return instance;
}

void display()

display.setCurrent(this);

152

/**
Displays the data passed to it on screen. Actually
this method delegates the job of displaying the data
to an instance of SearchResultScreen. This method,
however, sets a new instance of that class to be the
current displayable.

@param results a Vector of records from the address
book"s record store.

*/

void displaySearchResults(Vector results)

SearchResultScreen screen = new SearchResultScreen(results);
display.setCurrent(screen);

}

/**
Builds a result set of records that match a specified
name. The criteria is that the record must match the
name entered by the user in the "keyEntry" TextField.
This method employs the
AddressBook.getMatchesByName() method to apply the
specific Filter that defines this name matching.

*/

Vector buildSearchResults()

AddressBook addressBook =
AddressBookMain.getlnstance() .getAddressBook();

String matchKey = keyEntry.getString();
Vector results = new Vector();

try

RecordEnumeration re = addressBook.getMatchesByName(matchKey);
byte[] record = null;

while (re.hasNextElement())
{

record = re.nextRecord();
results._addElement(record);

}

catch (RecordStoreException rse)

{

rse.printStackTrace();

}

return results;

}

/**

Builds search results and displays it on the screen.
*/
class BuildSearchResultsAction implements Runnable

{

public void run()

{

Vector results = buildSearchResults();
displaySearchResults(results);

153

}
}

public void commandAction(Command c, Displayable d)

{
if (c == go)

Runnable action = new BuildSearchResultsAction();
action.run();

}
else if (c == back)
{
AddressBookMain.getlnstance() -display();

}
}
}

The bui IdSearchResults() method in the SearchScreen class obtains an enumeration of
records by calling the getMatchesByName(String matchKey) method inthe
AddressBook class. This method filters the records to return only those in which the name field
begins with the matchKey.

The getMatchesByName () method accomplishes this filtering by passing arecord filter as the
first argument to the enumerateRecords() method. The instance of

MatchAl INamesFi I'ter defines the semantics of the filter, namely, to find al records that
begin with the substring matchKey.

The enumerateRecords() method applies the following method of the filter object to each
record in the record store:

boolean matches(byte[] candidate)

If theresult is true, it includes that record in the enumeration set. Conceptually, thisis similar to
defining an SQL query in arelational database system. The RecordFi I ter object defines the
search criteria.

Noticein Listing 7.2 that the RecordFi I'ter argument was nul I. Thisis how the
RecordList class can return all recordsin the enumeration; thereis no filter to apply.

Y ou can define multiple filters to support searching on different criteria. Following the design of
Listing 7.4, you could define multiple inner classes that implement RecordFi I'ter and use the
inner class appropriate to the search at hand.

Record Comparators

Y ou undoubtedly noticed that the second argument passed to enumerate-Records() inthe
previous exampleswas nul I. This second parameter is a placeholder for arecord comparator. A
record comparator is an object that compares two records to determine their ordering, or sorting.
Comparators provide applications with the capability to perform some kind of sorting.

Like filters, comparators define the semantics of the comparison function. A record comparator is
an implementation of the RecordComparator interface, which defines the single method

int compare(byte[] recordl, byte[] record2)

154

A comparator aso defines three constants, explained in Table 7.1, that your implementation
should use as valid return values for this method.

Theidiom for using comparators is the same as that for record filters. Y ou define a class that
implementsthe javax.microedition.rms.RecordComparator interface. You passan
instance of it to the enumerateRecords() cal. Records retrieved from the data store are
compared with one another, two at atime, and then are ordered according to the results of the
comparison. Y ou can thus retrieve records from the enumeration in the order defined by the

comparator.

Listing 7.4 demonstrates the use of arecord comparator. It defines anew inner class of the
AddressBook classyou saw in Listing 7.1. The new inner class AlphabeticalOrdering
implements RecordComparator. Its comparison method extracts the name field from each of
its byte array parameters and compares them lexicographically.

Table 7.1. RecordComparator Constants

\Constant \Description
public static int Two records are equivalent according to the comparison
EQUIVALENT semantics.

public static int
FOLLOWS

Record 1 is "greater than" record 2 according to
comparison semantics.

public static int
PRECEDES

Record 1 is "less than" record 2 according to comparison
semantics.

Listing 7.4 This record comparator defines semantics for ordering records based
on the lexicographic ordering of the value of their name fields.

/**

This inner class implements a RecordComparator whose
policy it is to do alphabetic ordering.

*/

class AlphabeticalOrdering implements RecordComparator

{
/**

No-arg constructor.

*/

public AlphabeticalOrdering()

super();

public int compare(byte[] recl, byte[] rec2)

{

ByteArraylnputStream baisl = new ByteArraylnputStream(recl);
DatalnputStream disl = new DatalnputStream(baisl);

ByteArraylnputStream bais2 = new ByteArraylnputStream(rec2);
DatalnputStream dis2 = new DatalnputStream(bais?);

String namel

String name2

try

{
namel
name2

null;
null;

disl.readUTFQ);
dis2.readUTFQ);

catch (10Exception ioe)

155

{
}

iT (namel == null || name2 == null)
return O;

ioe.printStackTrace();

int result = namel.compareTo(name?2);
if (result < 0)

return RecordComparator.PRECEDES;
else if (result == 0)

return RecordComparator.EQUIVALENT;
else

return RecordComparator._.FOLLOWS;

}

}

Y our address book can use this new comparator to lexicographically sort alist of names retrieved
from the record store. For example, to sort the names returned in a search, you simply instantiate
your new comparator and pass it as the second argument to the enumerateRecords() cal. The
following code fragment in Listing 7.5 is the new version of the getMatchesByName (String
matchKey) method call in the AddressBook class.

Listing 7.5 To realize sorting, simply pass an instance of a comparator to the call to
enumerate records from the record store. Different enumerators can define
different sorting policies.

RecordEnumeration getMatchesByName(String matchKey)
throws RecordStoreNotOpenException

MatchAl INamesFilter filter = new MatchAlINamesFilter(matchKey);
AlphabeticalOrdering comparator = new AlphabeticalOrdering();

return recordStore.enumerateRecords(filter,
comparator,
false);
}

Y ou can run this application and determine for yourself that multiple records returned in a search
will now be sorted lexicographically. Y ou can also use this comparator to sort the names returned
in the List entries function of the address book. Instead of passing anul I for both the filter and
the comparator, pass an instance of the comparator AlphabeticalOrdering when you're
retrieving the enumeration of all records.

Record Listeners

Applications have the ability to receive notification whenever arecord is added, removed, or
changed in arecord store. The RecordStore class allows you to add and delete record listeners
on aparticular record store using the methods listed in Table 7.2. A record listener is any class
that implements the RecordListener interface, defined in the javax.microedition.rms
package. It declares the three methods shown in Table 7.3.

Table 7.2. RecordStore Event Listener Support Methods

\RecordStore Method Name \Description
\void addRecordListener(RecordListener 'Makes the referenced object the

156

listener)

\Iistener for this record store.

listener)

void removeRecordListener(RecordListener

Removes the referenced listener
as this record store listener.

Table 7.3. RecordListener Interface Methods

\RecordListener Method Name

|Description

void recordAdded(RecordStore
recordStore, int recordld)

Notifies the record listener that a record
was added to the specified record store
with the specified id.

void recordChanged(RecordStore
recordStore, int recordld)

Notifies the record listener that the record
with the specified id was changed in the
record store.

void recordDeleted(RecordStore
recordStore, int recordld)

Notifies the record listener that the record
with the specified id was deleted from the
record store.

The ability to associate listeners with record stores means that your listeners can be notified of
changes to any record in the record store of which they are listeners. It's necessary to pass back
information about the affected record store because your listener could very well register itself
with more than one record store. The idiom for registering record listenersis the same as that for
using any other event listener, so I'll skip code examples here.

Miscellaneous Record Store Features

The RecordStore class defines afew other features that are useful for applications. Table 7.4
lists some of the other methods in the RecordStore class and briefly describes their uses.

Table 7.4. Methods in the RecordStore Class

Method Name

IDescription

‘void closeRecordStore()

|Closes the record store.

‘static void deleteRecordStore()

|Deletes the record store.

long getLastModified()

Returns the last modification time.

String getName()

Returns the name of the record
store.

int getNumRecords()

Returns the number of records in
the store.

byte[] getRecord(int recordld)

Retrieves the record by id.

byte[] getRecord(int recordld, byte[]
buffer, int offset)

Gets the record and places it in the
supplied buffer.

byte[] getRecordSize(int recordld)

Gets the size of the specified
record.

int getSize()

Returns the amount of space (in
bytes) that the record store
occupies.

int getSizeAvailable()

Returns the number of bytes
remaining by which the record
store may grow.

int getVersion()

Returns the record store version
number.

static String [] listRecordStores()

Returns a list of all record stores
available to the MIDlet suite.

157

static RecordStore openRecordStore(String Opens the named record store,
name, boolean createlfNecessary) creating it if it doesn't exist.

Chapter Summary

The MIDP Record Management System (RMS) supports persistent storage of datarecordsin a
device-independent manner. The RecordStore class provides the API for persistent data storage
and abstracts the details of access to device-specific storage areas.

Record stores are identified by names, which consist of a maximum of 32 Unicode characters.
Record stores can be shared among MIDlets in the same MIDl et suite.

The RM S defines a simple record-oriented database abstraction. Records are stored as an array of
bytes. The record store has no notion of Java built-in types.

Y ou can retrieve records by supplying a unique record id. Alternatively, you can retrieve records
by obtaining an enumeration of records from aRecordStore.

Enumerations are necessary to search for records in arecord store. Conceptually, record filters
provide akind of query mechanism. In conjunction with the RecordStore enumeration facility,
record filters support the retrieval of only those records that match one or more criteria. A record
filter, aclassthat implements the RecordFi I ter interface, defines the criteriafor the search.

Record comparators provide the ability to sort records retrieved from an enumeration.
Comparators define the policy for sorting and are used with the enumeration facility. A
RecordComparator implementation defines the ordering semantics.

Record listeners are listeners that register with a particular record store. They make it possible to
notify your program of changes to any record in the record store.

Performance is an important issue for record-store access. Performance of current RMS
implementations is quite slow. Application developers should carefully consider using the RMS
only when necessary. They should consider other alternatives for persisting data and compare the
trade-offs between the different alternatives.

Developers should also measure the performance of their RM S implementation when running real
applications to ensure that performance is acceptable to end users. Already there have been real-
world applications that were too slow because of their use of record store updates. Rewriting the
applications so that the entire record store contents were downloaded and replaced proved to be
faster than performing updates on changed items!

158

Chapter 8. MIDP Networking and Communications

e The MIDP Networking Model
e Generic Connection Framework Classes and Interfaces
o Differences between J2ME and J2SE Networking

At this point, you know how to write stand-alone MIDP applications that can, among other things,
interact with the user and persist data. The next step isto learn how to write networked
applications. After dl, the 2ME platform supports pervasive computing, and the CLDC/MIDP in
particular supports personal maobile communications devices. Connectivity is an important part of
mobile computing with MIDP and is the subject of this chapter.

Before delving into code examples, it's important to have some exposure to the concepts that apply
to MIDP networking. Examples will follow the discussion of these important concepts.

The MIDP Networking Model

In MIDP, asin J2SE, |10 streams are the primary mechanism available to applications to read and
write streams of data. Both J2SE and J2ME have a java . i o package that contains these stream
classes. Additionally, the MIDP definesthe javax.microedition. io package, which
supports networking and communications for MIDP applications. This package isin contrast to
the J2SE java.net package, which defines networking support on that platform.

MIDP applications use the javax.microedition. io typesto create and manipulate various
kinds of network connections. They then read from these connections and write to them using the
typesin the MIDP java. io package, which contains a subset of the classes and interfacesin the
J2SE java. io package.

Perhaps the single most important goal of MIDP networking is to abstract the heterogeneous
nature, complexity, and implementation details of the plethora of different wireless network
environments. Achieving this goal requires insulating application developers from exposure to the
characteristics of the network.

The MIDP Generic Connection Framework

The MIDP generic connection framework defines an infrastructure that abstracts the details of
specific networking mechanisms, protocols, and their implementations from the application. In the
generic connection model, an application makes a request to a connector to return a connection to
the target resource. To make a connection, you use a generically formed address to specify the
target network resource. The form of the address is the same, regardless of the type of connection
desired.

The connector represents the actual connection returned as a generic connection. That is, it
characterizes the connection as one that has the lowest common denominator of attributes and
behavior of al connection types.

Applications make all such connection requests through the same connector, regardless of the type
of connection desired. The connector abstracts the details of setting up a specific type of
connection. The connector provides only a single interface for obtaining access to network
resources, regardless of the nature of the resource or the protocol used for the communication. The

159

term generic connection thus refers to the generic mechanism used to obtain access to resources,
not to the content or type of the established connection.

In the MIDP generic connection model, you identify the resource and get a connection to it in one
step. This contrasts with the J2SE model, where the application must involve two objects: one that
represents the target resource itself, with the other object being the stream or connection to it.

For instance, to accessa URL in J2SE, an application constructs a java. net. URL object, which
represents the actual URL resource. Using this object, the application then explicitly opens a
connection to the URL resource, which yields a URLConnection object. This object represents
the actual connection between the application and the resource and provides the medium through
which the application accesses the contents of the resource. Now, the application can obtain an
input stream from the connection that delivers the content of the resource.

The URL class knows how to access the physical resource. The connection object, on the other
hand, knows nothing about locating and opening a URL, but it does know how to interfaceto a
URL abject. You, as the programmer, must understand what object to use to access the URL and
what connection or stream interfacesto it.

In general, the J2SE model requires the programmer to build a stream that's compatible with the
type of resource being accessed—a URL, file, a network socket, a datagram, and so forth. The
J2SE model doesn't abstract these details from the application.

In the MIDP model, streams behave the same as in the J2SE model; they still don't know anything
about the actual physical network resource. They simply know how to manipulate the content
given to them when they were instantiated. The connector, however, hides from the application
the details of interfacing the stream with the actual network resource.

There are two main advantages to the generic connection framework model. First, it abstracts the
details of connection establishment from the application. Second, this abstraction makes the
framework extensible. By using a standard, extensible mechanism for referencing network
resources, MIDP platform implementations can be enhanced to support additional protocols while
maintaining a single mechanism for applications to access al kinds of resources. Moreover,
application logic remains independent of networking mechanisms.

To use the generic connection framework, MIDP applications specify the network resource they
want to access by using a universal resource identifier (URI), which follows the Internet standard
URI syntax defined by RFC 2396. A URI supports a canonical syntax for identifying resources on
the Internet. The generic form of aURI is

<scheme>://<address>;<parameters>

Part of a URI isits scheme field, which represents the protocol to be used for the connection. RFC
2396 supports a plethora of valid schemes, such as fi le, datagram, socket, serversocket,
http, ftp, and so forth.

The CLDC doesn't specify support for any of these. The reason is that the CLDC specification
doesn't allow customizations. Therefore, all CLDC implementations must support the same
features. MIDP implementations, however, can implement as many customizations as desired. The
MIDP specification does require that implementations at least support the HTTP 1.1 protocol,
however. Several factors influence the availability of protocol support in MIDP implementations:

e Performance limitations in wireless networks, connection establishment time, bandwidth,
and latency constrain the types of networking communications that are feasible when
compared with fixed networks.

160

¢ Client-side software (on the mobile device) dictates the kinds of connection schemes that
can be supported. Mobile devices currently don't have the resources to support processing
for general types of networking connections or application level protocols.

e Wireless Internet portals make heavy use of HTTP as their primary application-level
communications mechanism.

A MIDP platform implementation provides the actual implementation of support for protocols.
These protocol implementations aren't part of the MIDP or CLDC specifications. They represent
some of the implementation-specific components mentioned in chapter 1.

Connectors and Connections

Figure 8.1 shows a schematic representation of the steps involved in the creation and use of a
connection. These steps, which we list next, correlate to the notation in Figure 8.1.

Figure 8.1. The connection factory produces connections to network resources by
parsing the URI scheme field and enlisting the help of specific network classes to
build the right type of transport mechanism.

(

Wireless

Resource i
network

1. The application requests the Connector classto open and return a connection to a
network resource.

2. TheConnector .open() factory method parses the URI and returnsaConnection
object. The returned Connection object holds references to input and output streams to
the network resource.

3. Theapplication obtains the InputStream or the OutputStream object fromthe
Connection object.

4. The application reads from the InputStream or writes to the OutputStream as part
of its processing.

5. The application closes the Connection when finished.

161

A connection object contains an input stream and an output stream for reading and writing to the
resource, respectively. Figure 8.1 represents schematically the relationships between the
connection and its two streams.

Once you have the connection, you use its two streams to interact with the network resource.
There are two aspects to communicating with a network resource:

e parsing the protocol message
e parsing the message payload—the message content

For example, if the client establishes an HTTP connection, the client must parse HT TP protocol
syntax and semantics of the response message returned by the server. The HTTP message
transports some kind of content, and the client must also be able to parse the content appropriately.
If, for example, the message content isHTML data, the client must properly parse HTML content.
If the application doesn't know the format of the data delivered by the input stream, it cannot
correctly interpret either the syntax or semantics of the stream content.

The MIDP generic connection framework defines a hierarchy of connection types that capture the
nature of different kinds of stream connections. That is, the different types represent different
protocols used by connections. Using the appropriate connection type makes it easier to parse and
manipulate different kinds of content. For example, HT TP connections are a mainstay of MIDP
networking communications. The generic connection framework defines a connection type whose
interface supports constructing HTTP requests and parsing HT TP responses.

Generic Connection Framework Classes and Interfaces

The javax.microedition. io package defines one class and a collection of interfaces that
represent different types of content connections. The Connector classisthe single concrete
entity in the MIDP generic connection framework. Y ou must use it to obtain actual connectionsto
resources. It really contains afactory method that creates various types of connections to support
different protocols.

A hierarchy of interfaces in the generic connection framework defines the abstractions that
characterize the different kinds of connections supported by the connection factory. These
interfaces provide methods that make it easier for applications to manipulate common types of
connections.

Figure 8.2 shows the inheritance hierarchy of the MIDP interfaces that are part of the generic
connection framework.

Figure 8.2. The connection types each support a specific level of abstraction,
which is reflected by the methods in each interface. Capability increases, and
abstraction decreases, as you move further down the hierarchy. All interfaces are
in the Javax.microedition. 10 package.

162

javax. microedition.io.Connection

AN

DatagramConnection InputConnection OutputConnection StreamConnectionMNotifier

N/

St reamConnecllun

Conle ntCnnnemmn

HtpConnection

At the top of the hierarchy isthe Connection interface. Asits name suggests, it represents the
most generic, abstract type of connection. Naturally, every other type of connection derives from
it. The Connection interface contains only the single method

public void close()

Asyou know, a connection is already open when the Connector class createsit, which isthe
reason there's no open () method in the interface. Once finished with a connection, however, an
application must closeit.

The direct subinterfaces of Connection represent sightly less abstract types of connections. As
you travel downward from the root of the connection hierarchy, interfaces acquire more
capabilities. The InputConnection interface represents a connection's stream data as an
InputStream, that is, astream of byte-oriented data. Table 8.1 showsits two methods.

Table 8.1. InputConnection Interface Methods

InputConnection Method Name |Description

DatalnputStream Opens and returns a DatalnputStream that's

openDatalnputStream() connected to the network resource associated with
this connection

InputStream Opens and returns an InputStream that's connected

openlnputStream() to the network resource associated with this
connection

These methods return types of InputStream objects. Recall that DatalnputStreamisa
subclass of InputStream. Theideaisthat you can obtain streams that facilitate your
interpretation of the data as byte-oriented data. If you wish to interpret the data in any other way,
it's up to you to create a suitable "transformation” that enables you to access and interpret the data
in the manner desired.

163

The OutputConnection interface is another subinterface of Connection. It deals with output
streams and also characterizes the content of its streams as byte-oriented data. Its methods are
shown in Table 8.2. Y ou should use this interface when writing byte-oriented data to a destination
resource.

Using these two interfaces, then, you can treat the input stream or output stream of datato or from
the resource as a sequence of raw bytes, parsing it using the methods in the Datalnput or
DataOutput interfaces. Of course, you must know the format of the data sent by the device, or
the format expected by the device, respectively. In other words, there's no abstraction of the data
that removes the need for you to know the syntax and semantics of the datain an
InputConnection or OutputConnection.

Table 8.2. OutputConnection Interface Methods

\OutputConnection Method Name \Description

DataOutputStream Opens and returns a DataOutputStream that's
openDataOutputStream() connected to the network resource associated with
this connection

OutputStream Opens and returns an OutputStream that's
openOutputStream() connected to the network resource associated with
this connection

Stream Connections

The StreamConnection interface directly extends both the InputConnection and
OutputConnection interfaces. It inherits the methods from these two interfaces, described
previously in Tables 8.1 and 8.2.

The StreamConnection interface represents a connection as a stream of datain the most
abstract sense of the word—as a sequence of bytes. It's an empty interface; it doesn't add any
behavior to either of its two super-interfaces. Nevertheless, its presence in the hierarchy does serve
a purpose beyond the InputConnection and OutputConnection interfaces. It servesasa
placeholder that represents any type of connection whose data can be treated as a stream of bytes.

The StreamConnection interface abstracts the details of the connection mechanism—the
protocol used in an implementation of a particular type of connection, and its syntax and
semantics. For example, the 2ME Wireless Toolkit supplies two implementations of
StreamConnection—one for connecting to communication ports and the other for connecting
to Unix-style client sockets. The StreamConnection interface characterizes both of these types
of connections as raw streams of bytes with no stipulation of protocol syntax or semantics. The
implementations, however, are quite different indeed. In this section, you'll see how to set up a
connection to a communication port. Later, you'll see how to set up a socket connection.

Connections to communication ports, like al other connections, must be constructed by passing a
URI to Connector.open(). You must specify the address of the communication port you wish
to open. The scheme field must have the value comm, which identifies the connection as a stream
connection for communication ports. The full form of the addressis:

address := <scheme>:<unit>;<parameters>

scheme = "comm"

unit = <integer representing comm port to open>
parameters := <device-specific configuration parameters>

For example, you could open a connection to a communications port with the following statement:

164

StreamConnection conn = Connector.open(''comm:0;baudrate=9600");

The full set of parameters that are acceptabl e depends on the native system's device driver
software and, ultimately of course, on the actual device being accessed.

Content Connections

The ContentConnection interface extends the StreamConnection interface. It refines the
notion of a stream connection. It characterizes connections that contain content, instead of
representing them as a simple stream of raw bytes or a stream whose structure must be known a
priori.

Of course, al streams contain some kind of "content”; the very purpose of protocol messagesisto
transport a payload of data. The idea behind the ContentConnection interface isthat it
represents connections that can describe their content in some way, typically through the presence
of metainformation attributes defined by the protocol. The ContentConnection interface
abstracts the details of extracting that information from the stream so you don't have to know the
syntax or semantics of the implementation protocol.

The ContentConnection interface represents the common characteristics of afamily of
application level protocols, which typically define attributes that describe the data they transport.
More precisaly, ContentConnection defines some basic attributes that are common to al such
content connections. Table 8.3 lists the three methods defined by ContentConnection. You
can see how they apply to afamily of application-level protocols.

Table 8.3. ContentConnection Interface Methods

ContentConnection Description
Method Name

String getEncoding() |Returns the value of the field that indicates the character
encoding set used to represent the message content

long getLength() Returns the length of the message

istring getTypeQ) IReturns the type of the content

Protocols that can be represented by this interface will typically use some kind of attribute tagging
that's independent of the content they transport. An example of such aprotocol isthe HTTP
protocol.

Not surprisingly, the ContentConnection interface has one such subinterface,
HttpConnection, which represents connections that use the HTTP protocol. The
HttpConnection interfaceis defined by the MIDP, not by the CLDC. HTTP is an application-
level content protocol. Y ou undoubtedly recognize the applicability to HTTP of the three
ContentConnection interface methods in Table 8.3.

The HttpConnection interface extends this abstraction to specifically characterize the
attributes of HTTP protocol connections. It supports sending requests and receiving responses and
the ability to extract and parse HTTP fields for both request and response messages. It also
provides for the capability to obtain information about the connection itself. Table 8.4 lists the
methods of the HttpConnection interface.

Table 8.4. HttpConnection Interface Methods

HttpConnection Method Name Description

long getDate() Returns value of the date header field

165

long getExpiration()

|Returns value of Expires header field

String getFile()

Returns the value of the file field of this
connection's URL

String getHeaderField(int n)

Returns the value part of the key-value header
field indexed

String getHeaderField(String
name)

Returns the value of the header field with the
specified key name. Any valid HTTP field
name is acceptable as an argument

long getHeaderFieldDate(String
name, long def)

Returns the value (parsed as a date) of the
header field with the specified key

int getHeaderFieldInt(String
name, int def)

Returns the value (parsed as an integer) of the
named header field

String getHeaderFieldKey(int n)

Returns the key portion of the indexed header
field

String getHost()

Returns the HOST portion of this connection's
URL

long getLastModified()

Returns the value of the Last-Modified field
of the URL

int getPort()

Returns the value of the port field of this
connection's URL

String getProtocol()

|Returns the protocol name of the URL

String getQuery()

Returns the query portion of the URL, the part
after the first "?" in the URL

String getRef()

Returns the ref portion of the URL

String getRequestMethod()

Returns the current request method

String getRequestProperty(String
key)

Returns the value of the named general
request property

int getResponseCode()

Returns the HTTP response status code

String getResponseMessage()

Returns the HTTP response message
associated with the response status code

String getURL()

Returns a string form of the URL

void setRequestMethod(String
method)

Sets the method for the URL; valid values are
GET, POST, and HEAD

void setRequestProperty(String
key, String value)

Sets the value of the specified general request
property

In addition to these methods, the HttpConnection interface also defines afull complement of
constants that represent HTTP status and error codes, which are shown in Table 8.5. For more
detail about the status code constants, see the HTTP 1.1, specification, RFC2616, which can be
found at http://www.w3c.org or at http://www.ietf.org.

Table 8.5. HttpConnection Interface Constant Definitions

\HttpConnection Constant

|Description

istatic String GET

|Represents the GET request method

istatic String HEAD

|Represents the HEAD request method

static int HTTP_ACCEPTED

HTTP status 202

static int HTTP_BAD_GATEWAY

HTTP status 502

static int HTTP_BAD_METHOD

HTTP status 405

static int HTTP_BAD_REQUEST

HTTP status 400

166

http://www.w3c.org/
http://www.ietf.org/

static int HTTP_CLIENT_TIMEOUT

HTTP status 408

static int HTTP_CONFLICT

HTTP status 409

static int HTTP_CREATED

HTTP status 201

static int HTTP_ENTITY_TOO_LARGE

HTTP status 413

static int HTTP_EXPECT_FAILED

HTTP status 417

static int HTTP_FORBIDDEN

HTTP status 403

static int HTTP_GATEWAY_TIMEOUT

HTTP status 504

static int HTTP_GONE

HTTP status 410

static int HTTP_INTERNAL_ERROR

HTTP status 500

static int HTTP_LENGTH_REQUIRED

HTTP status 411

static int HTTP_MOVED_PERM

HTTP status 301

static int HTTP_MOVED_TEMP

HTTP status 302

static int HTTP_MULT_CHOICE

HTTP status 300

static int HTTP_NO_CONTENT

HTTP status 204

static int HTTP_NOT_ACCEPTABLE

HTTP status 406

static int HTTP_NOT_AUTHORITATIVE

HTTP status 203

static int HTTP_NOT_FOUND

HTTP status 404

static int HTTP_NOT_IMPLEMENTED

HTTP status 501

static int HTTP_NOT_MODIFIED

HTTP status 304

static int HTTP_OK

HTTP status 200

static int HTTP_PARTIAL

HTTP status 206

static int HTTP_PAYMENT_REQUIRED

HTTP status 402

static int HTTP_PRECON_FAILED

HTTP status 412

static int HTTP_PROXY_AUTH

HTTP status 407

static int HTTP_REQ TOO_LONG

HTTP status 414

static int HTTP_RESET

HTTP status 205

static int HTTP_SEE_OTHER

HTTP status 303

static int HTTP_TEMP_REDIRECT

HTTP status 307

static int HTTP_UNAUTHORIZED

HTTP status 401

static int HTTP_UNAVAILABLE

HTTP status 503

static int HTTP_UNSUPPORTED_RANGE

HTTP status 416

static int HTTP_UNSUPPORTED_TYPE

HTTP status 415

static int HTTP_USE_PROXY

HTTP status 305

static int HTTP_VERSION

HTTP status 505

static String HTTP_POST

Represents the POST request method

Y ou can see that the HttpConnection interface provides the most functionality of all the

interfaces. HTTP islikely to be the application-level protocol most commonly supported by MIDP
implementations.

Listings 8.1 through 8.4 show source code for a simple program that demonstrates how the user of
amobile device can request an HTTP resource from a remote-origin server. Y ou might find that
this program doesn't work when executed behind your corporate firewall, depending on the
configurations of your company's network, firewall, and proxy server. Y ou might be restricted to
visiting URIs of respources within your corporate network.

The HTTP protocol defines semantics that address the need for clients to request resources
through proxy servers. A browser might ater the user's URI based on its proxy settings and send a

167

modified request to the proxy server, which forwardsit to the origin server. The program doesn't
make such alterations to URIs and, therefore, it might not pass a URI as expected by your proxy
server. Unless you know how the browser modifies URIs, you might have a difficult time
accessing a URI that's external to your company network. The result will be that the programin
Listing 8.1 will throw an 10Exception.

The programin Listing 8.1 displays only the metainformation about requested resources and
doesn't display the resource itself. It only requests the header information for each resource by
using the HTTP HEAD method. To write a program that displays arbitrary content would be
tantamount to writing afull browser, which is obviously beyond the scope of this book.
Fortunately, several companies do offer HTTP browsers that run on MIDP devices, so you don't
have to

Listing 8.1 The ConnectionDemo program defines the MIDlet that displays HTTP
protocol metainformation, namely the value of HTTP header fields. The program
uses a HEAD command to obtain only the metainformation instead of the whole

page.
import javax.microedition.midlet_MIDlet;
import javax.microedition.lcdui.Display;

/**
This class defines the MIDlet for a demo that prompts
the user for a URI, then makes an HTTP connection to an
origin server and fetches a resource. The program uses
a Form object to enable the user to enter the URI.

*/

public class ConnectionDemo extends MIDlet

{

private static ConnectionDemo instance;

private URIEntry urlForm;
public ConnectionDemo()

super();
instance = this;
b

/**
Returns the single instance of this class. Calling
this method before constructing an object will return
a null pointer.

@return an instance of this class.
*/
public static ConnectionDemo getlnstance()

{
}

public void startApp()
{

return instance;

Display display;
URIEntry urlForm = URIEntry.getinstance();

display = Display.getDisplay(this);
display.setCurrent(urliForm);

168

}

public void pauseApp(Q)
{

}
void quit()
{

destroyApp(true);
notifyDestroyed();

}

public void destroyApp(boolean destroy)
{

}

/**
Sets this object to be the current displayable object
for the MIDlet.

*/

public void display()

{

instance = null;

Display.getDisplay(this).setCurrent(urlForm);

}
}

Listing 8.2 The URIENntry class defines a form that prompts the user for input of a
URI.

import javax.microedition.midlet.MIDlet;

import javax.microedition.lcdui.Command;

import javax.microedition.lcdui.CommandListener;
import javax.microedition.lcdui.Display;

import javax.microedition.lcdui.Displayable;
import javax.microedition. lcdui.Form;

import javax.microedition.lcdui.TextField;

/**

This class defines the Form that prompts the user for a
URI to which the HTTP connection will be made. The user
enters the URI and hits the "Go" command button.

This class®s instance then instantiates the helper
ResourceDisplay class, which does the job of fetching
the HTTP resource and displaying it.

*/
public class URIEntry extends Form

{

implements CommandListener

private static Command go = new Command(''Go", Command.SCREEN, 1);
private static Command exit = new Command(“Exit', Command.EXIT, 1);
private static URIEntry instance;

// The URI entered by the user.
private TextField uri;

// The thread that controls execution of the

169

// ResourceDisplay object.
private Thread thread;

/**
Constructor.
@param title the title of the Form.
*/
private URIEntry(String title)
{
super(title);
instance = this;

uri = new TextField("'Connect to:",
null,
70,
TextField.URL);
uri.setString("http://");

append(uri);

addCommand(go) ;
addCommand(exit);
setCommandListener(this);

}

/**
Returns the single instance of this class.

@return an instance of this class.
*
pﬁblic static URIEntry getlnstance()
{ if (instance == null)
i instance = new URIEntry(""Enter URL'™);

return instance;

/**
Sets this object to be the current displayable object
for the MIDlet.

*/

public void display()

MIDIet m = ConnectionDemo.getlnstance();
Display.getDisplay(m).setCurrent(this);

public void commandAction(Command c, Displayable d)

{
if (c == go)
{
// This screen displays the metainformation of
// the resource specified by the URI.
ResourceDisplay view = new ResourceDisplay(uri.getString());

MIDIet m = ConnectionDemo.getlnstance();
Display.getDisplay(m).setCurrent(view);

thread = new Thread(view);

170

thread.start();

else if (c == exit)
{
ConnectionDemo.getlnstance().quit();
}
}
}

Listing 8.3 The ResourceDisplay class defines a form that displays the
resource. It uses a helper object to get the resource.

import javax.microedition.lcdui.Command;

import javax.microedition. lcdui.CommandListener;
import javax.microedition.lcdui.Form;

import javax.microedition.lcdui._Displayable;

/**
This class defines the Form that displays the
metainformation describing the HTTP resource. It is
designed to be controlled by a separate thread, hence
it implements Runnable.

This Form object uses a helper object to communicate
over the Connection with the HTTP resource. It then
takes the connection data from the helper object to
display on the screen for the user.

*/

public class ResourceDisplay extends Form
implements CommandListener, Runnable

{

private static Command back = new Command('‘Back', Command.BACK, 1);
private static Displayable instance;

// The helper object that makes the actual connection to
// the resource on the origin server and fetches the

// resource"s metainformation.

//

private HttpResource resource;

/**
Constructor.

@param uri the URI of the resource to fetch via a
HTTP protocol request.

*/

public ResourceDisplay(String uri)

{
super(""Http Info™);
instance = this;
resource = new HttpResource(uri);

addCommand(back) ;
setCommandListener(this);

}

/**
Starts the execution of this object: runs the
HttpResource helper object.

171

@see HttpResource
*/
public void run()

{

resource.run();
append(resource.getResourceMetalnfo());

}

/**
Returns the single instance of this class. Calling
this method before constructing an object will return
a null pointer.

@return an instance of this class.
*/
public static Displayable getlnstance()
{

}

public void commandAction(Command c, Displayable d)

return instance;

if (c == back)

URIEntry.getinstance().display(Q);

}
}
}

Listing 8.4 The HttpResource class defines the entity that actually fetches the
network resource.

import java.io.lnputStream;
import java.io.lOException;

import javax.microedition.io.Connection;
import javax.microedition.io.Connector;
import javax.microedition.io.HttpConnection;

import javax.microedition.lcdui._Displayable;

/**
This class defines the helper object used by the
ResourceDisplay class. It makes the actual connection
to the HTTP resource, sends the request, and fetches
the response. It places the response metainformation
in a buffer. This class provides a method that enables
another object to get this information as a String
object asynchronously.

This class also writes diagnostic output to standard
output for purposes of demonstration. The output will
appear in the J2MEWTK emulator window.

Note that this class implements Runnable. It can be
used by a program to do its work asynchronously,
controlled by a thread different from the application
main thread. In this connection demo, a separate thread
is not spawned to control this instance, because a

172

separate thread already controls the ResourceDisplay
instance, which uses this instance.

*/

public class HttpResource implements Runnable

{

private static Displayable instance;

// The URI representing the resource to fetch.
private String uri;

// A buffer to hold the resource information.
private StringBuffer contents = new StringBuffer();

// The connection to the resource.
private Connection conn;

// The reference to the HTTP connection.
private HttpConnection httpConn;

// The connection®s input stream.
private InputStream is;

// The value of the HTTP status attribute field.
private int status = -1;

/**
Constructor.

@param uri the URI that specifies the resource to

fetch.
*/
public HttpResource(String uri)
{
super();
this.uri = uri;
}
private String userAgentiD()
{

StringBuffer buf = new StringBuffer();

String config = System.getProperty(‘'microedition.configuration™);
String profile = System.getProperty(*'microedition.profiles'™);

buf.append(*'Configuration/);
buf.append(config);
buf.append(* Profile/");
buf._append(profile);

return buf.toString(Q);

}

/**
Runs this object. Connects to the URI, sends the
request, receives the response, and parses the
response message.

*/

public void run()

{

System.out.printIn(*’Connection class name = " +

conn.getClass() .getName());

173

connect();

parse();
System.out.printlIn(getResourceMetalnfo());
try

{

conn.close();

catch (10Exception ioe)

{
System.out.printIn(ioe.getMessage());
ioe.printStackTrace();

}

}

/**
Connects to the origin server, which hosts the URI.
IT an exception occurs during connection, this method
catches it and gives no indication of the error
except to write diagnostics to standard output.

*/

protected void connect()

{
try

while (true)

{
// Connection is in the "setup" state.
conn = Connector.open(uri);
httpConn = (HttpConnection) conn;

httpConn.setRequestProperty(‘'method"”, HttpConnection.HEAD);
httpConn.setRequestProperty("'User-Agent", userAgentiD());

// Connection is in the "connected" state.
if (resourceRelocated())

{
uri = httpConn.getHeaderField("'location');

// Connection iIn "closed" state after the
// call to close().
conn.close();

}

else

{

}
}

if (serverError())
{
conn.close();
return;

}

// Connection is in the "connected" state.

is = httpConn.openlnputStream();

System.out.printIn("Input stream class name = " +
is.getClass() .-getName());

break;

int responseCode = httpConn.getResponseCode();
printResponseCode(responseCode);

174

catch (10Exception ioe)
{
contents.append(ioe.getMessage());
System.out.printIn(ioe.getMessage());
ioe.printStackTrace();
3
3

private boolean resourceRelocated()
boolean relocated = false;

try
{
status = httpConn.getResponseCode();
if (status == HttpConnection.HTTP_MOVED_TEMP ||
status == HttpConnection.HTTP_MOVED PERM ||
status == HttpConnection_HTTP_TEMP_REDIRECT)
{

relocated = true;

}

}

catch (10Exception ioe)

{
System.out.printIn(ioe.getMessage());
ioe.printStackTrace();

}

return relocated;

}

private boolean serverError()

boolean error = false;
try
{
status = httpConn.getResponseCode();
if ((status == HttpConnection.HTTP_NOT_IMPLEMENTED)
|l (status == HttpConnection.HTTP_VERSION)
|l (status == HttpConnection.HTTP_INTERNAL ERROR)
|l (status == HttpConnection.HTTP_GATEWAY_TIMEOUT)
|l (status == HttpConnection.HTTP_BAD_GATEWAY))
{

error = true;

}

catch (10Exception ioe)
{

error = true;
System.out.printIn(ioe.getMessage());
ioe.printStackTrace();

}

return error;

private void parse()

{
if (httpConn == null)
return;

175

String protocol = httpConn.getProtocol();
contents.append(*'Protocol: " + protocol + "\n");

String type = httpConn.getType();
contents.append("Type: " + type + "\n"");

String encoding = httpConn.getEncoding();
contents.append(*"Encoding: " + encoding + "\n'");

long length = httpConn.getLength();
contents.append(*'Length: "™ + length + "\n"");

String uri = httpConn.getURL();
contents.append(""URL: ™ + uri + "\n"");

String host = httpConn.getHost();
contents.append(*"Host: " + host + '"\n"");
String query = httpConn.getQuery();
contents._append(*'Query: " + query + '\n'");

String requestMethod = httpConn.getRequestMethod();
contents.append(*'"Method: "™ + requestMethod + "\n'");

}

private void printResponseCode(int code)

{

System.out.print("'Response code : ');

switch (code)
{

case HttpConnection.HTTP_ACCEPTED:
System.out.printIn(""HTTP_ACCEPTED");
break;

case HttpConnection.HTTP_BAD_GATEWAY:
System.out.printIn(""HTTP_BAD_GATEWAY");
break;

case HttpConnection.HTTP_BAD METHOD:
System.out.printIn(""HTTP_BAD_METHOD™");
break;

case HttpConnection.HTTP_BAD REQUEST:
System.out.printIn(""HTTP_BAD_REQUEST");
break;

case HttpConnection.HTTP_CONFLICT:
System.out.printIn("*HTTP_CONFLICT™);
break;

case HttpConnection.HTTP_CREATED:
System.out.printIn(""HTTP_CREATED");
break;

case HttpConnection.HTTP_FORBIDDEN:
System.out.printIn("*"HTTP_BAD FORBIDDEN");
break;

case HttpConnection.HTTP_GATEWAY_ TIMEOUT:
System.out._printIn(""HTTP_GATEWAY_TIMEOUT'™);
break;

case HttpConnection.HTTP_GONE:
System.out.printIn(""HTTP_GONE™);
break;

case HttpConnection.HTTP_NO_ CONTENT:
System.out.printIn(""HTTP_NO_CONTENT™);
break;

case HttpConnection.HTTP_NOT_ACCEPTABLE:

176

System.out.printIn(""HTTP_NOT_ACCEPTABLE");
break;

case HttpConnection.HTTP_NOT_FOUND:
System.out._printIn(**HTTP_NOT_FOUND™) ;
break;

case HttpConnection. HTTP_OK:
System.out.printIn(""HTTP_OK");
break;

case HttpConnection.HTTP_PROXY_AUTH:
System.out.printIn(""HTTP_PROXY_AUTH"™);
break;

case HttpConnection.HTTP_UNAVAILABLE:
System.out._printIn(""HTTP_UNAVAILABLE"™);
break;

case HttpConnection.HTTP_VERSION:
System.out.printIn(""HTTP_VERSION™);
break;

default:
System.out.printin();

}

}

/**
Gets the resource metainformation.

@returns the metainformation returned by the origin
server in its response message.-

*/

public String getResourceMetalnfo()

{

}
}

return contents.toString();

Four classes comprise the example in Listings 8.1 through 8.4:

e ConnectionDemo— definesthe MIDIet for this demo. It displays an instance of

URIEntry.

¢ URIEntry— definesthe form that prompts the user to enter a URI that the program
fetches.

e ResourceDisplay— definesthe form that displays the metainformation for the
resource fetched.

e HttpResource— definesthe helper class used by the ResourceDisplay classto do
the actual fetching of the user-specified resource.

The ConnectionDemo class defines the MIDIet. It displays aform (defined by the URIEntry
class) that prompts the user for a URI. The HttpResource class handles the processes of
connection setup, sending the request, and receiving and parsing the response. The
ResourceDisplay classdisplays the results. The HttpResource class contains the bulk of
the interesting code—that is, the networking code. The program instantiates this class once for
each connection made.

The program operates as follows. The user enters a URI in the text field of the URIEntry object.
The URIENntry object instantiates the ResourceDisplay class upon receiving ago command
input from the user, which means, "Go and fetch the resource specified.” This takes place in the
main event-handling thread. The URIEntry object then creates a separate thread to control the
rest of the execution of the ResourceDisplay instance.

177

The ResourceDisplay instance creates an instance of the HttpResource classto do the
actual work of fetching the resource. This work occurs asynchronously in the newly created thread.
The new thread controls the following steps:

creating the HttpResource instance

creating the connection to the origin server

receiving the server's response containing the resource
parsing the returned resource

displaying the resource data

All these steps could be time consuming. If they were executed by the event processing thread that
delivered the command to the application, the MIDP implementation would have to wait until the
foregoing steps finished before it could do anything else.

This use of threads is an important idiom. The goal isfor applications to avoid doing lengthy
command processing in acommandAction() method. Thisincludes processing that could block
for unacceptably long periods of time, such as waiting for aresponse from an HTTP server. It's
important for every CommandL istener to return from its commandAction() method "as soon
as possible.” For instance, in the program in Listing 8.1, the Connector .open() cdl blocks
until it receives aresponse or until it times out. The default timeout is about 15 secondsin the
J2MEWTK emulator. Thisis probably too long atime for the MIDP implementation to be blocked
from doing any event processing.

The HttpResource class defines an API that supports fetching resources on a separate thread. It
implements Runnab I e and defines its processing within the run() method. In our example, this
capability is not really used, because the second thread begins execution with the run() method
of the ResourceDisplay class, which then callsthe HttpRespource . run() method. The
HttpResource class could be used in another application, however, and its implementation of
Runnabl e reflectsits support for multithreaded execution.

Connection Objects. Asyou know, the various interfaces in the generic connection framework
represent different types of connections. It's the concrete implementations of these interfaces,
however, that really give a connection its characteristics and capabilities. Thisisagood time to
take a closer look at the implementations behind these interfaces.

I've been referring to the Connector class as a connection factory. More precisely, the
Connector . open() method implements the factory method design pattern. For more
information on this and other design patterns, see Design Patterns by Gammaet a., cited in the
References section at the end of this book. Y ou pass the Connector class the generically formed
address of some resource to which you want to establish a connection. This URI specifies the
scheme—the type of connection desired—but otherwise abstracts the protocol-specific details of
the connection. The factory passes back an object whose class implements the protocol
represented by the scheme field of the connection request.

This object's class implements the interface that characterizes the type of connection established.
The type of the implementing class is abstracted because you refer to the object using areference
to the interface type. For instance, the connection object returned in Listing 8.4 implements the
HttpConnection interface. Look at the following lines of code from the
HttpResource.connect() method.

Connection conn;
HttpConnection httpConn;

conn = Connector.open(uri);
httpConn = (HttpConnection) conn;

178

The first statement returns the connection object. The URI specifies the http scheme. The actual
connection object is more than just aConnection; it'san HttpConnection. Therefore you can
safely downcast the reference to one whose type isHttpConnection. You can do this because
the factory method returned an object whose class implements HttpConnection, not just
Connection. Thisisadifferent object from the one that would be returned for other values of
the scheme field in the Connector.open() cal.

Thefirst statement of the following excerpt from the HttpResource . run() method prints the
fully qualified name of the concrete class that implements the HttpConnection interface:

public void run

{
System.out.printIn(*’Connection class name = " +
conn._getClass() -getName());
connect();
parse();
}

If you run this program on Sun's 2ME Wireless Toolkit emulator, you see that the following
output identifies the name of the class that's part of Sun's J2ME reference implementation, which
is used by the 2ME Wireless Toolkit emulator:

com.sun.midp.io.j2me._http.Protocol

If you run the program in Listings 8.1 through 8.4 on another manufacturer's emulator, you'll seea
different class name. It will identify that manufacturer's implementation of the HttpConnection
interface. All of the protocol-specific classes are implementation dependent.

HTTP Connection State Model. HTTP connections exist in one of three states during their
lifetimes. This state model reflects the request-response nature of the HTTP protocol. The three
states are:

e Setup— The connection object is created, but there's no connection to the origin server yet.

e Connected— The connection has been made to the server, request parameters have been
sent to the server, and the connection object awaits the server's response.

e Closed— The connection has been closed. Subsequent calls to the connection's methods
will throw an 10Exception.

Figure 8.3 shows the state transition diagram for HT TP connection objects. The connection object
exists in the setup state when it's instantiated. At this point, the actual request string has not been
constructed. To construct the request, you must set the HTTP method and the request headers.
These values are set using the methods in Table 8.6. Before the connection can enter the
connected state—before it can send the request to the server and get a response—it must set the
HTTP request parameters, that is, it construct the request message. Invoking these methods,
however, doesn't cause any state transition.

Figure 8.3. HttpConnection objects transition to three different states during
their existence.

179

Connection conn=

Connector.open| "http://. .. "}

Extract data
from connection object

/_\

Closed

Connected

conn.close()

The connection transitions to the connected state when any of the methods in Table 8.7 are called.
The connected state represents the period between the time the request has been sent to the origin
server and the time either the client or server closes the connection. Y ou can see that the methods
in Table 8.7 all deal with extracting data from the response message. To extract the data, the
connection to the server must be valid in order for the client to have received aresponse.

Table 8.6. HttpConnection Interface Methods to Construct the HTTP Request

HttpConnection Method Name

Description

void setRequestMethod(String method) |Sets the HTTP request method, either

HEAD, POST, or GET

void setRequestProperty(String key, |Includes the specified header field in the

String value)

request, with its value set to value

Table 8.7. HttpConnection Interface Methods that Transition a Connection to
the Connected State

HttpConnection Method Name

Description

InputStream openlnputStream()

Opens and returns a reference to an
InputStream (inherited from
InputConnection)

OutputStream openOutputStream()

Opens and returns an OutputStream for a
connection (inherited from OutputConnection)

DatalnputStream
openDatalnputStream()

Opens and returns a reference to a
DatalnputStream (inherited from
InputConnection)

DataOutputStream
openDataOutputStream()

Opens and returns a reference to a
DataOutputStream (inherited from
OutputConnection)

180

[long getDate()

|Gets the value of date header field

String getEncoding()

Gets the string that describes the encoding of
the content in the response (inherited from
ContentConnection)

[Tong getExpiration()

|Gets the value of the expires header field

String getHeaderField(String
name)

Gets the value of the specified header field

long getHeaderFieldDate(String
name, long def)

Gets the value of the specified header field. The
value is parsed as a number

String getHeaderFieldInt(String
name, int def)

Gets the value of the specified header field. The
value is parsed as a number

String getHeaderFieldKey(int n)

Gets the specified header field. The argument
represents the index of the header field

long getLastModified()

Gets the value of the last-modified header
field

long getLength()

Retrieves the length of the header field

int getResponseCode()

Gets the status code of the HTTP response

String getResponseMessage()

|Gets the HTTP response message

String getType(Q)

Gets the type of content provided by the server
(inherited from ContentConnection)

Once a connection isin the connected state, you can only extract data from it or closeit. Y ou can
invoke the methods in Table 8.7 and 8.9. The methods in Table 8.8 all extract various parts of the
HTTP response, with the exception of the close () method, which closes the connection.

Once a connection isin the connected state, you can no longer invoke the methods in Table 8.6.
Y ou can't reset request parameters, which means you can't reuse a connection object to access
multiple URIs. Y ou're forced to instantiate a new connection by passing a new URI to the
Connector .open() cal. Incidentaly, either the client can close the connection after receiving
the response, or the origin server can close the connection after sending the response.

Table 8.8. HttpConnection Interface Methods Called in the Connected State

\HttpConnection Method Name

|Description

void close()

Closes this connection (inherited from interface
Connection)

String getFile()

Gets the <file> field of the URL of this
connection

String getHost()

Gets the <host> field of the URL of this
connection

int getPort()

Gets the <port> field of the URL of this
connection

String getProtocol ()

Gets the <protocol> field of the URL of this
connection

String getQuery()

Gets the query string of the URL of this
connection

String getRequestMethod()

Gets the current request method (GET, POST,
and so forth)

String
getRequestProperty(String key)

Gets the value of the named general request
property of this connection

String getRef()

Gets the <ref> field of the URL of this

181

Iconnection

String getURLQ) Gets the complete URL of this connection as a
string value

Noticein Listing 8.4 that the order in which header fields are inserted into request messages or
extracted from the server's response message is irrelevant. The connection class handles the
abstraction of creating well-formed HTTP messages and parsing HT TP responses.

Using Content Connections. The power behind using standard content connection mechanismsis
that no proprietary engineering is required to create either an access mechanism or an agreed-upon
format for message payloads. This standardization is the motivation behind supporting an HTTP
connection mechanism in MIDP. HTTP is the most ubiquitous standard application-level protocol
in use on the Internet today. It gives you the ability to access alarge variety of network services
because it supports the transport of arbitrary data through its use of a MIME-like tagging
mechanism.

HTTP connections can transport many different kinds of content, such asHTML and XML.
Additionally, HTTP can be used as a wrapper to tunnel other application-level protocol data. You
thus have a convenient data-transfer mechanism for client-server applications.

HTTP iswidey used by servers as the mechanism to deliver a plethora of services. Services can
be implemented using any one of avariety of technologies independently from their use of HTTP
as the delivery mechanism. Services can be implemented using Java servlets, Java Server Pages
(JSP), Perl scripts, CGl, and so forth.

The servlet model is particularly powerful, because servlets are written in Java and easily interface
with other Java enterprise technologies, and they easily interface to client technol ogies.
Additionally, servlet systems scale well, are hosted by standard Web servers, and can easily
construct output in various formats. In chapter 11, you'll learn how wireless Internet portals use
these technologies to build services for mobile devices.

Datagram Connections and Datagrams

The javax.microedition. io.DatagramConnection interface directly extends
Connection. Itsposition in the inheritance hierarchy diagram in Figure 8.2, aswell as its name,
suggests that datagram connections are indeed connections, albeit different from either stream- or
content-oriented connections. In fact, the DatagramConnection interface characterizes
connections that send and receive datagrams through the use of a datagram protocol.

In the world of inter-networking, the term datagram protocol implies a lightweight, stateless
protocol. But this distinction itself doesn't really help explain its position in the generic connection
framework hierarchy. A better perspective, perhaps, is to distinguish between application-layer
protocols and lower-layer protocols.

The term datagram protocol implies a protocol that sits at alower layer in the OSI model than do
application layer protocols. Datagram protocols transport datagrams, which are sometimes called
packets. These protocols typically route datagram messages from one machine to another based
solely on information contained within the datagram. Multiple packets sent from one machine to
another might be routed differently and might arrive in any order at the destination. Packet
delivery is generally not guaranteed.

The Internet Universal Datagram Protocol (UDP) is one concrete example of a datagram protocol.
In fact, it's the protocol supported by some MIDP implementations. It's built directly upon the
network layer Internet Protocol (IP). Remember that according to the MIDP specification, HTTP

182

1.1 isthe only protocol that implementations must support; all others are optional. Developers
should keep thisin mind with regard to application portability.

Use of the UDP protocol gives MIDP applications another standard mechanism to communicate
with well-defined network services. In chapter 11, you'll learn about some circumstances in which
the use of datagram protocolsis preferred over higher-level protocols.

UDP lacks many of the features that come with transport layer protocols like TCP, such as option
negotiation for connections, packet reassembly, end-to-end flow control, windowing, error
recovery, fragmentation, and guaranteed delivery. It relinquishes these features in favor of very
efficient, fast delivery. MIDP applications can use datagram connections where they need fast,
statel ess connections and where guaranteed delivery isn't required.

Table 8.9 lists the methods of the DatagramConnection interface. You can seethat it'sa
relatively simple interface. This simplicity reflects the low-level nature of the underlying
implementation protocol. Compare thisto the HttpConnection interface, whose methods
reflect the relatively more complex nature of HTTP protocol messages, and which use MIME type
message fields to define message semantics. Unlike application-layer protocols such asHTTP,
datagram protocols don't define attributes that reflect the nature of the payloads they transport.

Table 8.9. DatagramConnection Interface Methods

DatagramConnection Method Name |Description

int getMaximumLength() Returns the maximum allowed datagram length;
determined by the underlying protocol
implementation

int getNominalLength() Returns the nominal length of a datagram
Datagram newDatagram(byte[] Constructs a new datagram object, taking the
buf, int size) data from the specified array

Datagram newDatagram(byte[] Constructs a new datagram object with the
buf, int size, String addr) specified array data and with the specified

destination address
Datagram newDatagram(int size) |Constructs a new datagram object
Datagram newDatagram (int size, |Constructs a new datagram object with the

String addr) specified address

void receive(Datagram dgram) Receives a datagram and takes its data to
populate the given datagram argument

\void send(Datagram dgram) |Sends the specified datagram

To use a datagram connection a client application performs the following steps:

1. It constructs aDatagramConnection object.
2. It obtains aDatagram object from the DatagramConnection object.
3. It then populates the Datagram object with the data that comprises the payload to be sent

to the receiver.
4. It requests the connection to send the datagram.
5. It requests the connection to receive a response datagram.

To construct a datagram connection, you still need to use the Connector class. You indicate
your desire to obtain a datagram connection by supplying the string datagram for the scheme
field of the URI that you pass to one of the three forms of the Connector .open() method. The
complete syntax for datagram addresses is as follows:

address := <protocol>://<target>

183

protocol "datagram"

target = [<host>]:<port>
host = <valid DNS host name or number>
port = <valid system port number>

The specification of the host field is optional. If you omit the host field, the connection represents
aserver connection—the implementation assumes that the entity requesting the connection isa
server. Servers don't initiate message transmission, so no host name is needed to specify a
destination. A server connection waits for a client to send a datagram to it. The server extracts the
address of the sender from the datagram it receives and uses it as the address for its response. An
example of aserver connection specification is

datagram://:513

If the host field is specified, the connection is opened as a client connection. The implementation
assumes that the requestor is a client that's initiating a connection because it wishesto send a
datagram to the addressed host. An example of a client connection specifying a known host is

datagram://server .foo.com:513

Once the connection is established, your application can use it to send and receive datagrams. The
Jjavax.microedition. io.Datagram interface defines datagrams, which are the message
units sent and received by datagram protocols. The DatagramConnection object sends and
receives Datagram objects. Notice that the methods in Table 8.9 contain severa referencesto the
Datagram type.

Table 8.10 lists the methods in the Datagram interface. Notice that they only reflect the
following concepts:

e address— represents the address of the sender or receiver
e payload—the datagram treats the data as a single opaque entity with no interpretation of
its form, structure or type

These are the minimum pieces of information that all packets require. All datagrams must set
these two pieces of information in order to be sent successfully.

The Datagram interface lacks information about the syntax or semantics of payloads. The reason
issimply that datagrams define no syntax or semantics for the data they carry. Datagrams simply
treat their payloads as sequences of bytes. A datagram's payload is defined simply asabyte [].

A datagram can contain any information. A datagram service defines the format and content of its
datagrams. Sender and receiver must construct datagrams in such away that they adhere to these
definitions. That is, the byte[] must be written correctly by the sender and parsed correctly by
the receiver.

The Datagram interface extends the Datal nput and DataOutput interfacesin the java. io
package. This derivation ensures that it has a convenient interface for reading and writing binary
datainto and out of a datagram. Figure 8.4 shows the derivation hierarchy of the Datagram
interface. Table 8.11 lists the methods of the Datalnput interface, and Table 8.12 lists the
methods of the DataOutput interface. These interfaces are the same as the onesin the J2SE
jJava. io package.

Figure 8.4. A datagram characterizes generic data. The methods in this hierarchy
of interfaces support only the lowest abstraction that enables the manipulation of
built-in data types. There's no abstraction of protocol-specific fields.

184

java.io.Datalnput java.io.DataOutput

javax.microedition.io.Datagram

Table 8.10. Datagram Interface Methods

Datagram Interface Method Name Description

'String getAddressQ Returns the address in this datagram

byte[] getData() Returns the buffer containing the datagram
payload

int getLength() Returns the length of the datagram's
payload

int getOffset() Returns the offset of the read/write pointer
in the payload buffer

void reset() Resets the position of the read/write

pointer in the payload buffer

void setAddress(Datagram reference) |Sets the address of this datagram to be
that of the specified datagram

void setAddress(String addr) Sets the address to that specified by the
string

void setData (byte[] buffer, int Sets the payload of this datagram
offset, int len)

void setlLength(int len) Sets the length of the datagram's payload
Table 8.11. Datalnput Interface Methods

Datalnput Method Name Description

boolean readBoolean() Reads a boolean value from the input stream

byte readByte() Reads one byte from the input stream

char readChar(Q) Reads a character from the input stream

void readFully(byte[] b) Reads bytes from the input stream until the

specified array is full

void readFully(byte[] b, int |Reads the specified number of bytes into the

off, int len) specified buffer, starting at the offset indicated

‘int readInt() \Reads an int value from the input stream

[Tong readLong() Reads a long value from the input stream

\short readShort() \Reads two input bytes and returns a short value

int readUnsignedByte() Reads one byte, zero extended, from the stream

int readUnsignedShort() Reads two input bytes and returns an int value

String readUTFQ) Reads in a UTF-8 encoded string of characters

int skipBytes(int n) Skips over n bytes from the input stream

185

In addition to agreeing on format, sender and receiver must be able to locate each other. Each
service has a binding to a standard port. This binding ensures that a client knows how to establish
aconnection to a server that provides the desired service.

Table 8.12. DataOutput Interface Methods

IDataOutput Method Name IDescription

\void writeByte(byte[] b) |Writes all bytes to the output stream

void write (byte[] b, int Writes the specified number of bytes to the output

off, int len) stream, starting at the offset

\void write(int b) |Writes the low-order byte to the output stream

void writeBoolean(boolean V) |Writes a boolean value

void writeByte(int v) Writes the low-order byte of the int

void writeChar(int c) Writes the two low-order bytes to the output

void writeChars(String s) Writes every character as Unicode to the output

void writelnt(int v) Writes an int (four bytes) to the output stream

void writelLong(long v) Writes the long value (four bytes) to the output

void writeShort(int v) Writes the int as two bytes to the output stream

void writeUTF(String s) Writes each character in Java-modified UTF format,
preceded by two bytes indicating the length in bytes

For example, if aMIDP application wants to communicate with a standard Unix Network Time
Protocol (NTP) daemon, it would construct a connection that uses the NTP daemon's standard port
number, which is 123. The MIDP client application must format the payloadsin its request
datagrams to adhere to the NTP definition. It must also be able to parse the response sent back by
the server.

MIDP differs somewhat from the J2SE platform in its support for datagram connections. J2SE has
the java.net package. For instance, its DatagramPacket class defines a datagram. The
DatagramSocket class implements a datagram protocol over a socket connection.

These classes don't exist in CLDC/MIDP. In fact, there's no java.net package availablein
CLDC/MIDP. On the other hand, the CDC contains arobust java.net package that contains
these classes.

Listing 8.5 demonstrates the above concepts. It represents a datagram client that connectsto a
particular datagram service. The important steps that the program performs are as follows:

1. It obtainsanew DatagramConnection object.

2. It getsaDatagram object from the DatagramConnection.

3. It populates the Datagram with the properly formatted semantic information that
comprises the request. (As the devel oper, ensure that the length of the datagram doesn't
exceed the maximum length allowed by the protocol.)

4. ItreceivesaDatagram response from the DatagramConnection. Thiscall blocks
until a datagram is received or the call times out.

5. It processes the data in the datagram.

6. It repeats the cycle for ongoing communications.

The program in Listing 8.5 doesn't actually implement Step 3. Doing so would require
constructing a properly formatted message as expected by the service to which the client is
connecting. Also, the "processing” of Step 5 simply involves printing the server's response to
standard output. In areal application, the client would use the datagram information in some way
for local processing.

186

Listing 8.5 Datagrams are sent and received by a datagram connection. This
program parses the payload of areceived datagram and displays it on screen.

import javax.microedition.midlet.MIDlet;

import javax.microedition.lcdui.Display;

import javax.microedition.lcdui.Command;

import javax.microedition.lcdui.CommandListener;
import javax.microedition.lcdui.Displayable;
import javax.microedition.lcdui.TextBox;

import javax.microedition.lcdui.TextField;

import javax.microedition.io.Connector;
import javax.microedition.io.Datagram;
import javax.microedition.io.DatagramConnection;

import java.io.lOException;

/**
This class implements a datagram client that connects to
a Network Time Protocol (NTP) server on the NTP standard
port 123.

The client is designed to be controlled by a separate
thread, hence it implements Runnable. An application
can do communications asynchronously from its Ul management.

Note that this Ffile represents only a skeleton of a
complete client. The full semantics of the NTP service
messages are not shown here. The purpose is simply to
demonstrate the structure of a client using MIDP
datagrams.

*/

public class DatagramTest extends MIDlet
implements CommandListener, Runnable

{

private static final int BUF_SIZE = 1024;

private static Command exit = new Command(“Exit', Command.EXIT, 1)

private static DatagramTest instance;
private Display display;

private TextBox dgramText;

// A datagram connection.
private DatagramConnection conn;

// A datagram which holds sent and received data.
private Datagram dgram;

// The address of the Network Time Protocol (NTP) daemon
// process on a particular server. NTP uses the UDP

// protocol.

private String address = '"'datagram://srl-usca28-07:123";

/**

No-arg Constructor.
*/
public DatagramTest()
{

187

super();
instance = this;

}
/**
Constructor. Note no validity checks are made on the
parameter. If it is malformed, an exception will be
thrown when the connection is attempted.
@param service the URI of the datagram service to
which to connect.
*/
public DatagramTest(String service)
L
this(Q;
address = service;
}
/**
Returns the single instance of this class. Calling
this method before constructing an object will return
a null pointer.
@return an instance of this class.
*/
public static DatagramTest getlnstance()
{
return instance;
}
public void startApp(Q
{
display = Display.getDisplay(this);
dgramText = new TextBox(''‘Datagram contents",

null,

2048,

TextField.ANY);
dgramText.setCommandListener(this);
display.setCurrent(dgramText);
run();

}
/**
Runs the datagram client. Opens a connection to the
datagram service. Populates a datagram object and
sends it. Receives the response synchronously, and
writes the bytes to standard output for demonstration
purposes. Catches any connection related excceptions
silently.
*/
public void run()
{
try
{

int maxLength;

// Open a client connection.
conn = (DatagramConnection)Connector.open(address);

maxLength = conn.getMaximumLength();
dgram = conn.newDatagram(maxLength);

188

// Ensure that the read/write pointer is at the
// beginning of the buffer, so data will overwrite
// any unitialized buffer memory.

dgram.reset();

// Populate the datagram before sending with a
// message that the datagram service understands.
// Construct the request in the datagram.

// ...

// Send the datagram just populated.
conn._send(dgram);

// Receive a datagram; its contents are put into
// the referenced datagram object.
conn.receive(dgram);

// Use this byte array to transfer the contents of
// the server®"s response to a more manageable Java
// object like a String. You can then use the

// datagram for another send or receive event.
byte[] data = dgram.getData();

// Extract the response string.
String str = new String(data);

// Do some processing with the response. Here
// just print it out for demonstration.
System.out.printin(str);

// Reset the read/write pointer for the datagram
// object. The next time data is written into the
// datagram buffer, it will overwrite the data

// from the previous send or receive operation.

// This ensures that previous and next data are

// not mixed in the same buffer, and won"t produce
// garbled messages.

dgram.reset();

// Continue processing, maybe sending and
// receiving more messages from the server.
// ...

catch (10Exception ioe)

{
System.out.printIn(ioe.getMessage());

ioe_printStackTrace();
quitQ;

return;

}

public void pauseApp()
{

}
void quit()

destroyApp(true);

189

notifyDestroyed();

}
public void destroyApp(boolean destroy)
{
try
{
conn.close();
}
catch (10Exception ioe)
{
ioe.printStackTrace();
}
}
public void display(Q)
{

Display.getDisplay(this).setCurrent(dgramText);

public void commandAction(Command c, Displayable d)

{
if (c == exit)

{
quitQ);

}
}

Notice that any Datagram objects by default contain the same address as the
DatagramConnection object that constructs them. Y ou can change the address of a datagram
using the methods in the Datagram interface.

The application must supply aDatagram object to send or receive adatagram. To send a
datagram, the application populates the datagram object with data that constitutes the message to
be sent to the server. When an application receives a datagram, its connection object popul ates the
datagram object with the data it receives from the sender.

Y ou can use the same datagram object to send and receive multiple messages. To do so, you must
ensure that you don't mix data from different messages. Before reusing a datagram object to send
or receive a new message, use the Datagram. reset() method to reset the read/write buffer
pointer.

A Datagram object has a buffer that stores the bytes that comprise the message being sent or
received. If you reuse aDatagram object, the bytes that were placed in the buffer from the
previous send or receive operation are still there. Calling reset () setsthe read/write offset
pointer to point to the beginning of this buffer and sets the length to zero. Thus, you're effectively
overwriting any previous data, ensuring that you are not mixing bytes from two separate messages.

Socket Connections

Socket connections are the last type of connection explicitly represented by the MIDP networking
infrastructure. MIDP implementations that support sockets implement traditional Unix style
sockets. It's worth mentioning once more that implementations aren't required to support any
connection mechanism other than HTTP 1.1. Many won't support socket connections.

190

The StreamConnectionNotifier interface represents awell-known server socket. The
StreamConnection interface that you saw previously represents a client socket.

A socket isacircuit oriented networking mechanism at the transport layer that usually implements
the TCP/IP pair of protocolsin fixed internetwork environments. A socket server isan
application-level piece of software that provides a connection-oriented networking service through
the use of sockets.

Sockets impose absolutely no structure on the payloads they carry. Like datagrams, they simply
transport sequences of bytes. The service defines the format, syntax, and semantics of the
transported data that comprise messages. Clients must adhere to these definitions in order to use a
service.

Socket connections have state at the transport layer. Supporting state is natural when sockets are
implemented using TCP connections. TCP is a connection oriented transport-layer protocol
designed to persist across multiple transmissions of data between client and server.

It's not imperative, however, that sockets be implemented using TCP/IP. Nevertheless, because
TCP/IP isthe Internet standard transport- and network-layer protocol pair, systems that implement
sockets using other mechanisms must interface to Internet hosts through the use of a gateway. This
requirement holds true in both fixed and wireless network environments.

Currently, TCP/IP is unsupported in many wireless networks. Nevertheless, wireless networks can
still support socket connections. They can obey the socket interface and create the same
connection-oriented abstraction as TCP/IP using other protocols—even proprietary ones. If the
carrier uses a non-standard protocol stack, however, they'll have a gateway that interfaces their
wireless network to the outside world.

Application-layer protocols may be defined on top of transport-layer protocolsif needed. The
application-layer protocol implementation uses whatever transport mechanism is available. For
example, HTTP is an application-layer protocol.

MIDP application designers can choose to build an application-layer protocol directly on top of a
socket mechanism if one is supported. If sockets aren't supported, the application-layer protocol
messages can be tunneled using HTTP. The application-layer protocol is responsible for defining
its own state, which is different from the transport-layer protocol state.

Socket Connection M odel. Socket connections are established like other types of connections;
clients use the Connector -open() method and specify the URI of a socket-based serviceto
which they want to connect. The connection model is dlightly different on the server side, however,
because of the connection-oriented nature of sockets. This model is necessary for serversto be
able to accommodate multiple, simultaneous client connections.

There's a standard idiom that you must use in order to work with server sockets. It's the same as
the Unix-style socket connection model. The following steps outline the connection scenario:

1. A server daemon establishes a connection that's bound to a well-known socket—a server
socket whose port and service have been previously established and advertised.

2. Theserver daemon listens for client connection reguests on this connection.

3. A client makes a connection request to the server daemon and awaits a response.

4. The daemon accepts the connection request and creates a new connection to the client; the
server binds the connection to a new socket. The server creates a new application object
that will communicate with the client over the new connection and spawns a thread to
control this entity.

5. Theclient connection request returns. The client application now has a connection object
whose end point is the new socket created by the server.

191

6. Theclient and server communicate over the new connection.
7. The server daemon continues to listen for subsequent connection requests on the well-
known socket.

Figure 8.5 shows a schematic representation of this process. The numbers of the stepsin the
foregoing list correspond to the numbersin Figure 8.5.

Figure 8.5. Socket-based services must be able to do asynchronous processing.
The daemon spawns a thread to control communication with each client.

Thread
L.
-

Client
application
object @

Stream

(:) connaction

notifier

e ()
Application

object

, Stream connection
Stream connection

Client Server

According to convention, awell-known socket uses a predetermined port to establish connections
with clients. The use of aparticular port by a particular service is unique across all services—
sockets, datagrams, and so forth. Clients thus know how to reach the desired server to request a
connection.

When the server daemon accepts a connection on its well-known socket, it can't communicate
with any other clients while that connection is open. Therefore, the server opens a second
connection over anew socket. The implementation on the server notifies the client and passes it
the details of the new socket connection. The implementation on the client creates a connection
object that talks to the server over the new socket. The server is now free to listen for additional
client connection requests on its well-known socket.

Theidiom for opening socketsis very similar to the idiom for opening datagrams. Applications
pass a URI to the Connector . open() factory method to obtain a connection. The syntax for the
URl is:

address
protocol

<protocol>://<target>
"'socket™

192

target := [<host>]:<port>
host = <valid DNS host name or number>
port = <valid system port number>

Once again, the presence or absence of the hostname in the URI dictates whether the connectionis
aserver or client connection. A server daemon first opens a connection on its well-known socket,
as shown in the following example:

StreamConnectionNotifier wellKnown =
Connector .open(*'socket://:98765");

The MIDP specification also allows the use of the serversocket scheme for server connections.
This latter scheme may be advantageous because the explicit use of serversocket in apiece of
code makes it more obvious to someone reading the code that a server connection is being
established. The following line of code demonstrates the use of the serversocket scheme:

StreamConnectionNotifier wellKnown =
Connector.open(*'serversocket://:98765");

The StreamConnectionNotifier classisthe MIDP equivalent of the J2SE platform's
jJjava.net.ServerSocket class. A StreamConnectionNotifier isessentialy aserver
socket.

Both of the above statements return a connection object that represents a connection to the well-
known socket. The server then listens on this connection for connection requests from clients, with
a statement like the following:

StreamConnection clientConn = wellKnown.acceptAndOpen();

This statement blocks until the arrival of a client connection request. Upon arrival of aclient
connection request, the acceptAndOpen () method processes the request before returning
control. To process the connection request, it

accepts the connection request

creates a new connection object

binds the connection to an unused socket
notifies the client of the new socket connection

pWONE

These steps explain the name StreamConnectionNotifier. The server daemon is"notified"
of a connection reguest when the blocking acceptAndOpen() cal returns. And, it notifies the
client to listen on the new socket it establishes for the client-server communication. Table 8.13
liststhe StreamConnectionNotifier interface's single method.

Table 8.13. StreamConnectionNotifier Interface Methods
StreamConnectionNotifier Description
Method
StreamConnection Returns a new stream object bound to a new socket
acceptAndOpen() and connected to the requesting client

Clients request a connection to a well-known socket by issuing a client connection request in the
standard manner. For example, the following statement represents a client connection request:

StreamConnection conn =
Connector.open(*'socket://server.foo.com:98765");

193

Clients must include the name of the server hosting the service; the port number represents the
server's well-known socket. Clients that want to connect to a service on the local machine can use
the localhost designation for the server, as shown in the following call:

StreamConnection conn = Connector.open(*'socket://l1ocalhost:98765");

Both the server's StreamConnectionNotifier.acceptAndOpen() call and the client's
Connector .open() cal create aStreamConnection object. You've already seen the
StreamConnection classin the context of our discussion of communication ports.

Y ou might be wondering why the generic connection framework uses the StreamConnection
interface to represent socket connections as well as connections to communications ports. The
reason is that this generic name, as the name itself suggests, aptly represents both types of
connections as streams of bytes. Furthermore, it can represent any other type of stream-oriented
connection, even if it uses adifferent protocol.

Nothing about the StreamConnection interface stipulates what kinds of protocolsit can
represent. The interface abstracts the protocol implementation details from the application.
Applications are not aware of the platform-specific classes that implement the interfaces.
Although actual implementations of a generic connection framework interface may vary, they
must support the intended behavior and semantics of the interface.

It's important to mention that not all implementations support server sockets. And, of those that do,
several currently don't work correctly. If server socket support isn't available on your
implementation but you must use sockets for some reason, you'll have to devise a scheme by
which aclient can still connect to a"server.” The server won't be able to support a well-known
socket model; it will have to define adifferent model that still allows clients to have a means of
establishing a connection.

Listings 8.6 through 8.8 demonstrate a set of classes that constitute a framework for socket
communicationsin MIDP. The intention is that these classes be used by an application that needs
socket communications. These examples comprise no more than a framework that builds the basic
framework of the socket communications support. They're not intended to be a functioning
application.

Certain issues have been ignored in this code. For instance, the networking service itself is
undefined; there's no definition of the application-level protocol message syntax or semantics.
Additionally, the code doesn't address the cleanup of worker threads on the server side. The
classes that comprise this example are:

e ServerSocket— Definesthe server daemon that listens on a well-known socket for
client connection requests.

e ServerAgent— Defines the entity that the daemon instantiates once for each client
request. Each instance communicates with a client. This class defines the actual service.

e ClientSocket— Representsaclient.

Listing 8.6 A server spawns a new thread to produce a server-side entity that
communicates with each client. The client and server must define the semantics of
their messages.

import javax.microedition.io.Connector;

import javax.microedition.io.StreamConnection;
import javax.microedition.io.StreamConnectionNotifier;

import java.io.lOException;

194

/**

This class implements a service that listens for client
connection requests on a well-known socket.

It opens a connection on a predefined port number. It
then blocks on this port, waiting for a client
connection request.

When a request arrives, it accepts the request, and
opens a new socket connection. These two steps result
in the implementation notifying the client
implementation of the new socket connection.

This server then spawns a component, and hands it the
new connection object. The component runs in a separate
thread. The component is now free to communicate with
the client asynchronously from the server®s continued
operation.

*/
public class ServerSocket implements Runnable

{

// The default port on which the well-known
// socket is established.
public static final String DEFAULT_PORT = ''9876";

// The port on which the well-known socket is
// established.
protected String wellKnownPort;

// The URI this server uses to open its well-known
// socket.
protected String uri;

// Connection for the well-known socket.
protected StreamConnectionNotifier wellKnownConn;

// A socket connection that connects a client.
protected StreamConnection clientConn;
/**
Constructor for subclasses.
*/
protected ServerSocket()
{
super();

/**
Constructor.

@param port the well-known port on which to establish

this object as a listener.
*/
public ServerSocket(String port)
{

this(Q;

if (port == null)

{

welIKnownPort = DEFAULT PORT;
}

else

{

195

wel IKnownPort = port;

}
setURI (port);
}

protected void setURI(String port)

{
StringBuffer buf = new StringBuffer(*'socket://:");
buf._append(port);
uri = buf.toString();

}

/**
Run this server. This method should be called
explicitly after constructing this object. It starts
listening for client requests on the well-known
socket. It is up to the caller to start this
execution in a separate thread.

*/
public void run()

{
while (true)

try
{
// Open a well-known socket connection for
// this "'service".
wellKnownConn = (StreamConnectionNotifier)Connector.open(uri);

// Listen for connection requests. This call
// blocks until a connection request is

// received.

clientConn = wellKnownConn.acceptAndOpen();

// Instantiate a server agent, the object that
// presents the service to the client. Each

// instance communicates with one client.

// Spawn a thread to communicate with the

// client making the connection request.
ServerAgent agent = new ServerAgent(clientConn);
Thread thread = new Thread(agent);

catch (10Exception ioe)

{
System.out.printiIn(ioe.getMessage());

ioe.printStackTrace();
break;

}
}
}
}

Listing 8.7 A server agent is an object that communicates with a client
independently from the server daemon. It runs in its own thread, allowing other
instances to simultaneously communicate with their clients.

import javax.microedition.io.StreamConnection;

/**

196

This class defines the component that the server
creates to communicate with a client. It acts like an
agent” on behalf of the server so that the server is
free to listen only for new connection requests.
Instances of this class are indeed part of the server.
*/
public class ServerAgent implements Runnable

{

private StreamConnection conn;

/**
Constructor.

@param c the connection object that represents the
connection to the client. The ServerSocket class
creates this object and passes it to this

constructor.
*/
public ServerAgent(StreamConnection c)
{
super();
conn = c;
}
/**
Executes this server agent. Starts the dialog with
the client. This method should be called explicitly
after this object is created.
*/
public void run()
{
// Communicates with the client. Implements
// the behavior that defines this service.
}

}

Listing 8.8 A client has a dedicated connection to a server agent. The state model
for the communications, as well as the syntax and semantics of the
communications, are defined by the server but must be obeyed by clients.

import javax.microedition.midlet_MIDlet;
import javax.microedition.io.StreamConnection;
import javax.microedition.io.Connector;

import java.io.lOException;

/**
This class implements a client that connects to a
server. To instantiate this class you must specify the
server (DNS host name) and the well-known port of the
desired service.

*/

public class ClientSocket implements Runnable

{
public static final String PROTOCOL = "'socket";

// The port of the server®s well-known socket.
private String serverPort;

// The host name of the server to which to connect.
private String serverHostName;

197

// The URI to the well-known server socket.
private String serverURI;

// A connection to the server.
private StreamConnection streamConn;

protected ClientSocket()

{

super();
/**

Public constructor. You must specify the DNS name of

the server and the service®s port number.

@param server the DNS name of the machine to which you

want to connect.

@param port the port number on server to which to

connect.
*/

public ClientSocket(String server, String port)
throws 10Exception

A
this(Q;
serverHostName = server;
serverPort = port;
serverURI = buildServerURI();
open();
}
/**
Constructor.
@param uri the Ffully formed URI of the service to
which you make a connection request.
@throws InvalidArgumentException of the URI is
malformed.
*/

public ClientSocket(String uri)
throws 10Exception

this(Q;
serverURI = uri;
}
/**
Opens the connection. After this object is created,
the connection to the server is not yet open. You
must open it explicitly. This makes the usage model
for clients more flexible.
@throws I10Exception if the connection can®"t be opened
for some reason.
*/
public void open() throws I0Exception
{

streamConn = (StreamConnection)

198

Connector .open(serverURIl);

}
/**
Closes the connection to the server.
*/
public void close()
{
try
{
streamConn.close();
3
catch (10Exception ioe)
{
ioe.printStackTrace();
3
3
/**

Executes the client communication. Starts the client
sending of requests to the server. This method
should be called after the open() method establishes
the connection.

*/

public void run()

// Start communicating with the server.
// Send requests, read responses,

}

private String buildServerURI()

{
StringBuffer uri = new StringBuffer(PROTOCOL);

uri.append(*://");
uri.append(serverHostName) ;
uri.append(*':');
uri.append(serverPort);

return uri.toString();

}
}

Using Socket Connectionsin MIDP Applications. Certainly the fact that the
StreamConnectionNoti fier interface is defined as part of the MIDP |0 package suggests
that it should be used by applications running on MIDP devices. This means that a MIDlet would
maintain an open connection to a well-known socket for clients to use. The clients, however, may
reside elsewhere.

Actually, clients should be remote from the server. The intention of a server socket on a maobile
deviceisto handle inbound connection requests from remote clients. Using sockets for
communication on the same device is particularly inefficient. Although it's possible, better models
exist.

A remote client can run on another mobile device or on aremote host computer. Potentialy, either
of these types of clients could be in the same network as the device that hosts the server socket, or
they can reside externally to the carrier's network. The characteristics of the carrier's network in

199

which your application is running will determine the set of clients that can reach your mobile
device.

Carrier networks use some network-layer protocol as part of their network's protocol stack. Each
device has a unique network address while it's connected to the network. In order for clientsto
reach your device—and your server socket—they must be able to determine your device's network
address. A carrier's network configuration and implementation might not expose the addresses of
connected mobile devicesinternally or externally, thereby making it impossible for clients to
reach the desired mobile device.

Many carrier networks use some kind of dynamic network address assignment for mobile devices.
If this were the case, the address of a mobile device would have to be determined dynamically by
clients wishing to connect. If no lookup mechanism is provided, clients won't be able to request
connections to the device.

Regardless of whether mobile device addresses are static or dynamic, the carrier network may
employ some kind of network address trandation (NAT) scheme to modify or transform the
address of the mobile device. The motivation for using a NAT scheme could be address space
limitations or security. Certain network protocols may not have enough address space to handle
the sheer numbers of network devices. If thisis the case, and if the carrier wishes to expose
network addresses of its devices, it would have to provide some kind of registry for a dynamic
address mapping and lookup mechanism. Otherwise, your server application won't be reachable.

For security reasons, carriers might not want to expose the addresses of their users mobile devices
to the outside world. If such isthe case, your application might be reachable only by applications
running on the carrier's host systems. Moreover, access might be restricted to privileged
applications, even within the carrier's network. And even within the network, each device would
have to have away of advertising its network address for other devicesto reach it. In most
current-generation wireless networks, mobile devices aren't aware of each other's presence or
address. This could change with 3G networks, which will be more prevaent in afew years' time.

3G wireless networks are moving toward adoption of |Pv6 as their network layer protocol. With
IPv6, there are plenty of addresses available to assign a unique |P address to every mobile device
in the world. If each device has a unique static | P address, any application that knows your
device's address can connect to a well-known port on your device.

Once again, however, security and configuration policies exercised by carriers might affect the
actual capabilities available to applications.

Differences between J2ME and J2SE Networking

The previous sectionsin this chapter described the full set of networking capabilitiesin the MIDP.
The MIDP java. io package defines all these capabilities. There'sno MIDP java.net package
asthereisin J2SE.

Y ou should also be aware that the MIDP java. i o package supports a subset of the familiar J2SE
byte- and character-oriented input and output stream classes. In particular, BufferedReader,
LineNumberReader, and StringReader classes of the J2SE java. io package are missing
from the MIDP java. io package.

Although a basic circuit-based, socket-oriented infrastructure exists in MIDP implementations,
MIDP still lacks support for several distributed-communi cations mechanisms that are available on
the J2SE platform. The following application-level facilities are missing from the MIDP:

200

RMI requires too much processing for mobile devices to support at thistime.
Jini requires RMI; therefore, it's not present.

JavaSpaces doesn't exist in 2ME.

CORBA middleware doesn't exist in 2ME.

You'l seein chapter 11 that the absence of these mechanisms isn't necessarily a hindrance. The
primary reason for omitting them involves the processing power of personal mobile devices;
however, the technology that wireless Internet portals use to construct external interfaces to their
services gives MIDP devices adequate communications capabilities for today's applications.

Asyou're well aware, this book focuses on the MIDP of the 2ME platform. Nevertheless, it's
useful to say just afew words about the CDC and networking. The CDC offers more support for
networking and communications than the CLDC/MIDP does. For instance, standards committees
have defined an RMI profile. Other profile definitions are being developed. If you really need
these capabilities, you should consider the target devices that need your application and whether
the CDC or the CLDC is the more appropriate configuration for your application.

It's quite possible that within afew years' time, personal mobile devices will become powerful
enough to support other profiles, such as an RMI profile. But this situation could be several years
away, and you shouldn't design with that expectation today.

Chapter Summary

The MIDP supports networking through its javax.microedition. io package. It provides
support for basic connectionless and connection-oriented communication protocols.

The crux of the design of the MIDP networking package is the notion of a generic connection
framework. It defines a generic mechanism for applications to make network connections.
Moreover, it abstracts the differences in setting up and using different kinds of connections that
involve different protocols.

This framework enables application code to be written independently of the specific kind of
connection used. Thisindependence isimportant in pervasive environments where the nature of
underlying networks can affect the application services available.

A connection factory class, Connector, abstracts the details of requesting and obtaining different
kinds of connections that use different underlying communications protocols. Using the
connection factory, applications request access to network resources. Resources are delivered to
applications through connections that use the communications protocol specified in the connection
request.

A hierarchy of connection types represents the different types of connections that an application
can create. The definitions of the various interfaces of these connection types reflect the protocols
used by the various types of connections. They a so reflect the intended semantics for the type of
connection.

There are four basic categories of connections. Stream connections support connections to
communications ports, application-level connectionsto HTTP services, and basic Unix-style
socket connections. Datagram connections support connections to datagram services.

The MIDP lacks support for other application-level protocols, such as RMI, CORBA, or Jini. The
reason is that personal mobile devices lack the required processing power to support these
distributed-processing mechanisms.

201

New profiles that are being built on top of the CDC provide capabilities such as RMI. MIDP
designers should carefully consider what communications capabilities they need for each
application and design their application infrastructure around the capabilities available.

202

Chapter 9. Internationalization

o Concepts
e Internationalization Supportin MIDP

e Designing an 118N Solution for aMIDP Application

The MIDP application devel oper needs to consider an international community of users. People all
over the world are using mobile devices every day, and the expansive reach of mobile telephones
is ever increasing. The challenge is to engineer MIDP applications that can meet the needs of
users worldwide in terms of linguistic, geographical, and cultural constraints. The practice of
developing software that addresses these global issuesis called internationalization. Learning how
to develop internationalized MIDP applications is the subject of this chapter.

This chapter doesn't discuss the general internationalization solution for arbitrary computing
platforms—not even the general solution for the Java platform. Nor isit a conceptual introduction
to the full breadth or depth of the subject of internationalization, which is an areain which one
could focus an entire career. The topic of internationalization consists of avast and comprehensive
set of computer practices, and even a modest treatment of this topic lies far beyond the scope of
this chapter or book. Rather, this chapter covers only the areas of internationalization supported by
the MIDP. You'l learn how to use the MIDP APIsthat support internationalization. You'll also
learn about the areas for which no explicit support exists and how you can design around the
limitations of the tools available to you.

Concepts

Internationalization is the practice of generically enabling software to adhere to a geographical,
linguistic, and cultura context defined by the runtime environment. The term internationalization
is sometimes abbreviated "i18n" because 18 |etters are elided from the word between the letters i’
and'n'.

Locales and Localization

A locale represents a particular geographical, linguistic, and cultural context. It describes a context
in which an internationalized application runs. The term localization refers to the practice of
enabling an application to work in a specific locale context. The word localization is sometimes
abbreviated to "110n" because 10 characters are elided between the letters I' and 'n'. A developer
localizes an application for one or more locales after internationalizing it.

Language is usually the primary distinguishing factor for locales. Differences in the usage of
language encompass characteristics such as spelling, capitalization, punctuation, idiomatic
expressions, and even writing. In reality, geographic context normally delineates regions that use
language differently; language usage is usually associated with a particular geographical context.
For this reason, alanguage and a geographic context are the two primary pieces of information
that describe alocale. For instance, France, Switzerland, and Canada represent three geographic
areas in which the French language is used differently. Chinaand Taiwan represent different
locales in which Mandarin Chinese is spoken and written differently, and where differencesin
idiomatic expressions exist.

A local€'s geographic context can represent an area smaller than a country, such as a province,
region, or even an area as small as a city. For example, Hong Kong and Guang Zhou, which are
both citiesin China, speak the Cantonese dialect of Chinese quite differently and also write

203

Chinese ideographs differently. Similar differences exist for many languages, including the use of
English and Spanish throughout the world.

A locale provides a context for more than just language information. A locale aso implies the use
of a specific time zone, specific ways in which date, time, and number values are formatted, and
the use of a particular calendar (Gregorian, lunar, and so forth).

Localizing an application for a particular locale involves supplying the data required for the
program to function correctly in that locale. Localized data includes trandations of text seen by
users, specific collation policies, selection of a specific date and time format, use of the correct
numeric and monetary formats, and so forth.

A multilingual application is one that can operate using multiple locale contexts simultaneously.
For instance, a program might display text in one language but display dates and times formatted
according to the policy of another locale. And monetary and numeric values could be displayed
according to the policies of athird locale.

In reality, there are many other details required to create afully internationalized and localized Ul.
A comprehensive effort would include addressing cultural conventions—for example, avoiding
the use of offensive icons, using colors that represent mnemonics that the local user understands,
and so forth. Many of these issues deal with design, however. Designing i18n solutionsis beyond
the scope of this chapter. There are no specific mechanismsin i18n APIs that address many of
these issues. Creating high-quality internationalized designs is an art, as are many other areasin
software engineering.

Character Encoding Sets

A character encoding set is a mapping between each element of awritten language and the binary
encoding that uniquely representsit. An individual association that represents a language element
and its binary encoding is called a code point. To properly present text to users—in amanner
appropriate for the user's locale—requires applications to work with a character encoding set that
can correctly represent the language associated with the application's runtime locale.

ASCII isan example of acharacter encoding set. Because the ASCII character encoding set
accommodates only the English alphabet, we need other character encoding sets—sometimes
called charsets—to accommodate other languages. As you know, Java uses the Unicode character
encoding set internally to represent all character data. Data read by a program may or may not be
represented in Unicode. If it isn't, the data must be converted before being imported into the
application.

In addition to correctly representing data internally with character encoding sets, applications
must present data correctly to the user. This requires the use of afont that represents the elements
of the language in use. The computing platform has the responsibility of providing font support to
applications. The platform creates mappings between character encoding sets and fonts so
applications don't have to do it. These mappings define associations between code points and
glyphs. A glyph is an object rendered visibly that represents alanguage element, such as aletter or
ideograph.

Aspects of Internationalization

Internationalization involves many aspects of application development. Practically speaking, the
primary goal behind all of these facets of development is to engineer a user interface—and its
supporting infrastructure—that presents all Ul information in a comprehensible way to local users.
At aminimum, this effort involves supporting the following aspects of an application's execution:

204

e Messaging— presentation of al visible text (message text, error text, Ul component titles,
prompts, and so forth) in the language of the appropriate runtime locale context.

e Formatting policy— use of the correct locale-specific formats for al date, time, and
numeric quantities.

e Calendar and time zone policy— use of the correct calendar for the application's runtime
locale.

e Sring collation policy— use of an appropriate policy for string collation based on the
locale's language.

e General Ul features, locale-sensitive images, icons, and colors— using images and colors
that represent meaningful mnemonicsto local users.

To support the foregoing features, an internationalized application must perform some dynamic
configuration and information retrieval. Typically, an application will determine its locale context
dynamically upon startup. Then, it will configure all the necessary runtime components—such as
calendar objects, string collators, format objects and messaging components—that it needs to
conform to the locale context requirements.

M essaging. Messaging is the presentation of all text data to the user in alanguage appropriate for
the application's runtime locale context. It's the most visible area of i18n. Messaging involves the
execution of the following steps at runtime:

determination of the device locale environment

loading of the application's localized resources

dynamic lookup and retrieval of localized resources for Ul display
display of localized resources

Messaging is the area that best highlights the close relationship between i18n and 110n. To make
an i18n implementation usable, an application must be localized. For each locale supported, the
110n process must produce a set of translated message strings that the application can access at
runtime.

String Collation. String collation, also known as lexicographic sorting, is different from
messaging. Nevertheless, the two areas are related in the sense that collation functions manipulate
message text—text that the user sees.

Different languages define different rules for collation. A string collation facility must use a
mechanism that understands the collation rules for the strings' language context. Practically, this
includes an understanding of the details of the underlying character encoding set.

Applications do string collation with no knowledge of the source of the string text. That is, a
collation function doesn't retrieve collated strings from some repository of localized text. Instead,
the program collates strings that have already been retrieved from alocalized repository. Collation
functions don't need to know the original location of the string. They only need a language context
and a properly encoded string.

Date, Time, Numeric, and Monetary Value Formatting. Different locales use different formats
for writing dates, times, and numbers. For instance, in Europe, people write dates, times and
numbers differently from people in the United States. A French user writes date, time, and
numeric quantities using the following forms.

25 décembre 2002
2002/12/25
25/12/2002

08.30
14.45

205

20.000,45 (twenty thousand, and forty-five hundredths)
In the United States, however, these same quantities would normally be written as follows.

December 25, 2002
12/25/2002

8:30 am
2:45 pm

20,000.45 (twenty thousand, and forty-five hundredths)

An internationalized program needs to format and display dates, times, and numbers appropriately
for the runtime locale. Programs don't fetch these formatted quantities from some database; they
calculate them dynamically in the same way that strings are collated dynamically.

Calendar and Time Zone Support. Calendars, although related to dates and times, define
different characteristics and functionality. The differenceis that calendars perform calculations
that involve dates and times, whereas date and time objects support the formatting and display of
those quantities.

Internationalization Support in MIDP

Realistically, an i18n solution on any platform is somewhat constrained by the resources and API
mechanisms available to applications. The ease with which a programmer can implement i18n
support—and the comprehensiveness of that support—depends largely on the level of explicit
support for the major areas of i18n development. The MIDP platform provides the following
elements in support of i18n development:

e Calendar, Date, and TimeZone classes. java.uti l package

e system properties: microedition.encoding, microedition.locale

e conversion between character encoding sets. java. io package

e user-defined MIDlet suite attributes: application descriptor file (JAD file)

e retrieval of resources (files) from the MIDlet suite JAR file:
Class.getResourceAsStream(String resourceName)

The MIDP java.util package contains three classes that are related to i18n, namely
Calendar, Date, and TimeZone. These classes, however, are not themselves internationalized.
That is, their concrete implementations don't support operations in multiple locales. For example,
Calendar doesn't perform calculations according to a particular locale's calendar. The Date
class doesn't do locale-sensitive date and time formatting. Neither do they present localized
resources themselves. These classes do, however, present basic definitions that can be subclassed.

The Calendar and TimeZone classes are abstract. MIDP implementations must provide at least
one concrete subclass for each of them. Although not internationalized, their implementations will
be compatible with the locale supported by the MIDP implementation. For instance, in the United
States, an implementation would most likely support a Gregorian calendar.

The majority of MIDP implementations support only one locale. In fact, the MIDP specification
only requires an implementation to support asingle locale and only requires implementations to
support the Greenwich Mean Time (GMT) time zone.

206

The MIDP specification only requiresthat implementations support one
locale. MIDP implementations currently don't define adequate support
for internationalization and localization, which require too many

I esour ces.

Realistically, application developerswho hopeto deliver applicationsto
multiple platforms must build support for locales other than the one
supported by the manufacturer'simplementation. To support trueil8n
and 110n, developers must build application level APIsthat support
multiple time zones, calendars, and so forth.

Manufacturers may provide some of this support in the form of native
APlsand Javalibrariesthat sit on top of their M1DP implementation.
Developers must be aware of the level of i18n and 110n support
provided, if any, and they must plan their application design
accordingly.

Support for a single time zone and a single calendar implementation might suffice in the majority
of cases. Manufacturers may, however, provide additional calendar and time zone resources for an
implementation. The motivation for this kind of additional support would be to support
multilingual computing.

Device manufacturers typically support the locale associated with the device's target market. An
implementation that supports only one locale need not be internationalized. Although this
approach may work in the majority of markets for now, things could change. Single locale support
does not support multilingual computing. Applications may need to do messaging in one locale,
monetary formatting in another, and so forth.

Readers who are familiar with i18n support on the J2SE platform will notice that the MIDP has a
comparatively distinct lack of comprehensive i18n support (see the J2SE java . text package).
The reason, once again, is the constrained environment of maobile devices. The MIDP has no
Java. text package. In fact, MIDP has no API support for i18n features such as resource
bundles, message formatting, number formatting, locale-sensitive date and time formatting, and so
forth. The MIDP is also missing the new i18n featuresin version 1.4 of the JDK java.text
package, such as collation, bidirectional text support, annotations, attributes, and so forth.

18N Frameworks

Basically, the crux of all i18n designs is the mechanism that enables applications to retrieve the
right version of localized resources at runtime. Unlike J2SE, the MIDP has no real API or classes
that support general retrieval of localized resources. There's no ResourceBundl e class or any of
its subclasses. MIDP applications must create their own mechanisms for 110n resource definition
and retrieval. Redlistically, the most viable approaches are:

e Retrieve 110n resources from the JAD file.

e Retrieve110n resources from atext file that's part of the application JAR file.

e Retrieve 110n resources from a Java class file, such as an application-defined, J2SE-style
resource bundle mechanism.

Each of the three sample designsin the "Designing an 118N Solution for aMIDP Application"
section of this chapter uses one of these mechanisms as the center of its design.

Messaging

207

Unfortunately, the MIDP aso lacks explicit support for messaging. Unlike J2SE, the MIDP offers
no messaging API, and there's no MessageFormat class. In designing a messaging solution for
MIDP applications, designers should consider the following issues:

location of the localized data

mechanism for accessing the localized data

format of the localized data and character encoding set used

footprint of localized resources

runtime performance

localization process issues such as management of development resources, maintenance,
and so forth

o real wireless network environments, application provisioning environments, and
deployment issues

String Collation

The MIDP has no support for string collation. If your applications need to perform lexicographic
sorting of any kind, you'll have to design and implement your own mechanism to do it. Although
this support existsin J2SE, the classes consume too many resources for aMIDP device
environment at the present time.

Date, Time, and Numeric Formatting

The MIDP provides no support for formatting date, time, numeric, or monetary values. The MIDP
has none of the J2SE platform classes that support this formatting; there are no DateFormat,
NumberFormat, and DecimalFormat classes. Manufacturers may provide implementation-
specific classes to support these formatting capabilities, however.

The MIDP defines Date and TimeZone classesinits java.uti I package, but these classes
aren't really internationalized. That is, their interfaces don't define any capabilities that address
locale-sensitive processing.

The Date class simply represents a specific instance of time in Coordinated Universal Time
(UTC). There's no MIDP support for conversion of aDate quantity to represent atime valuein
any other time zone, or to format time values for display to users. This behavior is consistent with
the J2SE platform's definition of Date objects. The J2SE platform, however, has related classes
(such as DateFormat) that can format date quantities in aloca e-sensitive manner. The MIDP
has no such support classes.

The MIDP supports time zoneswith its java.util . TimeZone class. This classis abstract.

Y our MIDP implementation will provide at |east one concrete subclass that representsthe GMT
time zone. The MIDP specification only requires support for the GMT time zone; however, your
implementation might support others as well.

The TimeZone .getDefault() method returns a TimeZone object that represents the default
time zone for the host on which your application is running. Be aware that it might define the
GMT time zone, even if that's not the time zone in which your host application operates.

TheTimeZone .getTimeZone(String id) method returnsaTimeZone object for the three-
letter time zone argument specified in the call. Be forewarned that the object returned might not
represent the time zone you requested because the implementation might not support it. Clearly,
it'simportant that you, the application devel oper, be aware of which time zones your platform
support.

208

Calendar and Time Zone Support

Again, unlike the J2SE platform, the MIDP has only limited calendar support. The
jJjava.util.Calendar classisabstract. Therefore, every MIDP platform will provide at |east
one concrete implementation. Most likely, it won't be internationalized.

The platform's concrete Calendar subclass will most likely implement one particular calendar,
such as a Gregorian or lunar calendar. This might or might not be an appropriate calendar for the
locale contexts in which you deploy your applications. The
Calendar.getinstance(TimeZone zone) method returnsaCalendar object that
uses the specified time zone and the platform's default locale. Note that this factory method
doesn't make Calendar afully internationalized class. It still doesn't return an appropriate
calendar based on the locale context. For example, if you specify Chinese Standard Time, you
won't get an object that represents alunar calendar as used in Chinawith all MIDP
implementations. This means that you need to be aware of what calendar is supported by your
platform and whether it's congruent with the implementation's supported locale.

Designing an 118N Solution for a MIDP Application

This section presents three approaches to designing i18n and 110n support for MIDP applications.
These approaches have been chosen based on the APIs available in MIDP that can provide some
level of i18n support, or that are included in MIDP with the intention of addressing i18n.

Using MIDlet Attributes to Define L10N Resources

As you know, you can place user-defined attributes in your application's JAD file. This means that
you can use the JAD file to define MIDlet attributes that represent the localized resources used by
your application.

In this approach, programs no longer embed resources (for example atext string) in the
application. Instead, programs place resources in the JAD file. The program looks up a resource
by retrieving the value of some attribute. The programmer defines attribute names so that they
contain a component that represents a locale context. In this way, programs can retrieve the
version of the resource that's compatible with their runtime locale context.

To demonstrate this approach, I'll reuse the HelloWorld demo from chapter 3. The applicationis
renamed | 18NDemo to distinguish it from the original version.

Listing 9.1 shows the application descriptor file used by the I18NDemo program. Several new
attributes have been added to the JAD file. They represent text strings that the user sees during
application execution. Notice that there are two versions of each of these strings: one English and
one French. Thisfile supports execution of the application in English and French language
contexts.

Listing 9.1 The JAD file contains one attribute per application string per locale
supported.

118NDemo-alert-en_US: Alert

118NDemo-alert-fr_FR: Alerte
118NDemo-alert_text-en_US: The button was pressed
118NDemo-alert_text-fr_FR: Le bouton a été pressé
118NDemo-alert_title-en_US: Button Pressed
118NDemo-alert_title-fr_FR: Bouton a été Pressé

209

118NDemo-cancel-en_US: Cancel
118NDemo-cancel-fr_FR: Quitter
118NDemo-exit-en_US: Exit
118NDemo-exit-fr_FR: Sortie
118NDemo-greeting-en_US: Another MIDlet!
118NDemo-greeting-fr_FR: Un autre MIDlet!
118NDemo-help-en_US: Help
118NDemo-help-fr_FR: Aider
118NDemo-item-en_US: Item
118NDemo-item-fr_FR: Item
118NDemo-menu-en_US: Menu
118NDemo-menu-fr_Fr: Menu
118NDemo-ok-en_US: OK

118NDemo-ok-fr_FR: OK
118NDemo-sayhi-en_US: Say hi
118NDemo-sayhi-fr_FR: Dis bonjour
118NDemo-screen-en_US: Screen
118NDemo-screen-fr_FR: Ecran
118NDemo-stop-en_US: Stop
118NDemo-stop-fr_FR: Arreter
118NDemo-title-en_US: Hello, World
118NDemo-title-fr_FR: AIl&, tout le Monde
MIDIet-1: 118N Demo 1, i18n.png, 118NDemo
MIDIet-Info-URL:

MIDlet-Jar-Size: 19101

MIDIet-Jar-URL: il18n.jar

MIDlet-Name: i18n

MIDIet-Vendor: Vartan Piroumian
MiIDlIet-Version: 1.0

The attribute namesin the JAD filein Listing 9.1 take the following form.
<MIDlet name>-<key>-<locale designation>
For example, the following two attributes define the MIDlet title in English and French.

118NDemo-title-en_US: Hello, World
118NDemo-title-fr_FR: AIl&, tout le Monde

Listing 9.2 and Listing 9.3 show the two files that comprise the application source code. They
define and implement the attribute lookup scheme reflected by the attribute names in the JAD file.
The program retrieves the version of an attribute associated with the locale context in which the
application is running.

Thei18n design stipulates use of this naming scheme in order for the application to be able to find
110n resources in the JAD file. This example demonstrates how the design of the i18n solution
involves the configuration of 110n resources and the naming of attributes.

Listing 9.2 The modified Hel loWorld class is called 118NDemo. It uses a lookup
scheme to retrieve the correct version of application string attributes based on
locale.

import javax.microedition.midlet_MIDlet;

import javax.microedition.lcdui.Display;
import javax.microedition.lcdui._Displayable;
import javax.microedition.lcdui.Form;

OO WNER

210

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

/**
The First version of the 118NDemo application.

<p>This version demonstrates a naive approach of
loading localized resources from the MIDIet JAD
file. This approach quickly becomes untenable for
large numbers of resources. And it"s only useful
for text messaging, not other kinds of localized
resources.

*/

public class 118NDemo extends MIDlet

{
// The locale specified for the execution of this
// MIDlet.
private String locale;

// The Displayable. This component is displayed
// on the screen.
private HelloForm form;

// The Display instance. This object manages all
// Displayable components for this MIDlet.
private Display display;

// An instance of the MIDlet.
private static 118NDemo instance;

// The prefix for the attribute names of localized
// resources.
String attrPrefix = new String('I118NDemo-"");

/**

No-arg constructor.
*/
public 118NDemo()
{

super();

instance = this;
s
/**

Gets the instance of this class that exists in
the running application.

@return the instance created when the
application starts up.

*/

public static 118NDemo getlnstance()

if (instance == null)

{

instance = new 118NDemo();

}

return instance;

}

/**
Start the MIDlet. Get the current locale for
the implementation. Use it to construct a
prefix for attribute keys for all localized
resources. The names of the localized

211

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

resources in the JAD file follow a compatible
naming scheme.
*/
public void startApp(Q)
{
// Retrieve the locale from the AMS software.
// The locale must be set before this MIDlet
// executes.
locale =
System.getProperty("'microedition. locale™);

// Create a Displayable widget. Get the

// localized String that represents the title of
// the Form from the JAD file user-defined

// attributes. Get all localized strings in

// this way.

String formTitle = getResource('title™);

form = new HelloForm(formTitle);

// This app simply displays the single form
// created above.

display = Display.getDisplay(this);
display.setCurrent(form);

}

/**
Returns the value associated with the specified
key from the list of user-defined MIDlet
resources in the application JAD file.
@param key the key of the key-value pair.
@returns the value associated with the
specified key.

*/

public String getResource(String key)

{

StringBuffer index = new
StringBuffer(attrPrefix);
String value;

index.append(key);
index.append(*-");
index.append(locale);

value = getAppProperty(index.toString());
return value;

}

/**
Quit the application. Notify the
implementation that we are quitting.
*/
public void quit()
{
notifyDestroyed();

}

public void destroyApp(boolean destroy)
{

212

129 }

130

131 public void pauseApp(Q
132 {

133

134 }

135 }

Listing 9.3 The Hel loForm class defines the form object and uses the same
scheme as the main MIDlet class.

1 import javax.microedition.midlet.MIDlet;

2

3 import javax.microedition.lcdui.Alert;

4 import javax.microedition.lcdui.AlertType;

5 import javax.microedition.lcdui.Command;

6 import javax.microedition.lcdui.CommandListener;

7 import javax.microedition.lcdui.Display;

8 iImport javax.microedition.lcdui.Displayable;

9 import javax.microedition.lcdui.Form;

10

11 /**

12 This class defines a Form that displays some

13 simple text and a menu of commands. The purpose
14 of this class is to demonstrate 118n and 110n of
15 the user visible attributes. The class retrieves
16 110n resources from the application management
17 software.

18 */

19 public class HelloForm extends Form
20 {

21 // The default title of this Form.
22 private static final String DEFAULT TITLE =

23 "Hello, World";

24

25 // The command listener that handles command
26 // events on this Form.

27 private MyCommandListener cl = new

28 MyCommandListener();

29

30 // The display instance associated with this
31 // NMIDlet.
32 Display display;

34 // A reference to this object®s associated MIDlet
35 // object.
36 118NDemo midlet;

37

38 // An alert displayed in response to the

39 // activation of some of this Form®s commands.
40 Alert alert;

41

42 // The commands that are placed on this form.
43 private Command showAlert;

44 private Command sayHi;

45 private Command cancel;

46 private Command exit;

47 private Command help;

48 private Command item;

49 private Command ok;

213

50 private Command screen;

51 private Command stop;

52

53 /**

54 No-arg constructor. Sets a default title for
55 the form.

56 */

57 HelloFormQ)

58

59 this(DEFAULT_TITLE);

60 }

61

62 /**

63 Constructor.

64

65 @param title the title of the Form.
66 */

67 HelloForm(String title)

68 {

69 super(title);

70

71 midlet = 118NDemo.getlnstance();

72

73 // Add a string widget to the form.

74 String msg = midlet.getResource(''greeting™);
75 append(msg);

76

77 display = Display.getDisplay(midlet);
78

79 // Add a MyCommandListener to the Form to listen
80 // Tor the "Back' key press event, which should
81 // make an Alert dialog pop up.

82 setCommandListener(cl);

83

84 showAlert = new

85 Command(midlet.getResource("'alert™),
86 Command.SCREEN, 1);

87 addCommand(showAlert);

88

89 sayHi = new

90 Command(midlet.getResource(''sayhi),
91 Command.SCREEN, 1);

92 addCommand(sayHi) ;

93

94 cancel = new

95 Command(midlet.getResource(‘'cancel™),
96 Command.SCREEN, 1);

97 addCommand(cancel) ;

98

99 exit = new

100 Command(midlet.getResource("exit"),
101 Command.SCREEN, 1);

102 addCommand(exit);

103

104 help = new

105 Command(midlet.getResource("'help™),
106 Command.SCREEN, 1);

107 addCommand(help);

108

109 item = new

110 Command(midlet.getResource("item),

214

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

171 }

Command.SCREEN, 1);
addCommand(item);

ok = new
Command(midlet.getResource('ok™),
Command.SCREEN, 1);
addCommand(ok) ;

screen = new
Command(midlet.getResource(''screen™),
Command.SCREEN, 1);
addCommand(screen);

stop = new
Command(midlet.getResource(''stop™),
Command.SCREEN, 1);
addCommand(stop) ;

}

// This class simply listens for any command
// activation. The HelloForm instance sets an
// instance of this class as its command listener.
// The object instance doesn®"t check the command
// information, but simply displays a modal Alert
// indicating a soft button was activated by the
// user.
private class MyCommandListener

implements CommandListener
{

public void commandAction(Command c,
Displayable d)
{

String title =
midlet.getResource("alert_title™);
String msg = null;

it (c == showAlert)
{
msg = midlet.getResource(alert_text™);
alert = new Alert(title,
msg,
null, AlertType.INFO);
alert._setTimeout(Alert.FOREVER);
display.setCurrent(alert, HelloForm.this);

}
else if (c == sayHi)
{
alert = new Alert("'Button pressed",
msg,
null, AlertType.INFO);
alert.setTimeout(Alert.FOREVER);
display.setCurrent(alert, HelloForm.this);

}
if (c == exit)

118NDemo.getinstance() .destroyApp(true);

}
}

215

The crux of the i18n design is the lookup scheme used to find localized stringsin the JAD file.
The application-defined getResource(String key) method, defined in lines 103 to 115
really defines—and implements—the lookup scheme. To find aresource, the
getResource(String key) method constructs the attribute name and then looks up the
attribute.

For example, the following two statementsin lines 84 and 85 of Listing 9.2 fetch the title string of
the Form used in the application.

String formTitle = getResource('title™);
form = new HelloForm(formTitle);

The method constructs the full attribute name by concatenating three strings: the 118NDemo-
attribute prefix for this application, the resource attribute identifier without any locale variant
information, and the locale designation. The string title parameter is the resource attribute
identifier, not the form's title.

Inline 36 of Listing 9.2, the MIDlet defines the attribute prefix 118NDemo-. The startApp()
method retrieves information about the application's runtime local e context from the
microedition. locale system property and savesit as an instance attribute.

TheHel loForm object usesthe value returned by the getResource() cal asitstitle. The
Hel loForm classin Listing 9.3 repeats this scenario. It smply callsgetResource()to look up
the localized values of all text that the user sees throughout the execution of the application.

Because MIDP implementations will most likely support only onelocale,
it might be better for applicationsto " hard-code" thelocalereferenceto
be the one that you know your device supports, instead of retrieving the
locale information from the system properties.

An alternative approach isto build multiple versions of the application’s
JAD file so that each version contains attributesfor onelocale. Ship the
correct version of the JAD for therequired locale context. Of course,
you need to deter mine the locale context, which could be the locale in
which the phonewould be used, or simply thelocale preference of the
user.

Listing 9.2 usesthemicroedition. locale system property to
retrievethelocalein order to emphasize the concept of dynamically
determining locale context and associating resour ceswith locale
contexts. Delineating resources for different locales can help elucidate
your design and make your software more maintainable.

Keep in mind that in the future, as devices become mor e powerful,
MIDP implementations may very well support multiplelocales. If that
happens, the approach used in Listing 9.2 ispreferable.

Looking at the getResource() method inlines 103 to 115in Listing 9.2, you see that it uses
theMIDlet.getAppProperty() method to retrieve resources from the application descriptor
file and the manifest file. If an attribute existsin both files with exactly the same key name, then
the value isretrieved from the application descriptor file, and the value in the manifest fileis
ignored. If no attribute is found, or if no value is found for the key, the value nul I isreturned. If
the supplied key is not found, aNul IPointerException isthrown.

216

The attribute values in the JAD (or manifest) file must be encoded using a character encoding set
that supports the target language. There are two ways to do this:

e Encode the attribute values with a character encoding set designed for the local€'s
language. The character encoding set could be one that accommodates more than just the
target language, such as UTF-8.

e Encode the attribute values using Unicode escape sequences, for example \u4EA9. The
fileis still comprised of only ASCII characters, but the Unicode escape sequences can
represent any character of any written language.

Listing 9.2 includes support for the English and French locales. The ISO8859-1 character
encoding set can represent the English and French alphabets. If you desire to localize this
application for languages not supported by the ISO8859 family (Chinese, for example), you'd have
to encode the attribute values using an appropriate multibyte character encoding set.

If you choose to take the first approach just given (encoding using a character encoding set
designed for the locale's language), you'd need to find atext editor that supports input methods for
Chinese and writes charactersin an appropriate encoding. Alternately, you could use the second
approach and input Java Unicode escape sequences for each character. Simply find the Unicode
code point for each character in your string. This approach works because the

jJava. lang.String class knows how to create string objects from Unicode escape sequences.
Y our application can then read the attribute values and construct Java String objects from them.

Y ou can define the attribute names using the 2MEWTK Settings panel. Because the WTK doesn't
support the entry of non-ASCI|I text, however, you can't define non-English localized text for
attribute values. To enter non-English characters, you'll have to use atext editor to enter the
charactersin the JAD file directly. Y ou can use one that supports input method editors (IME) for
the target language, or enter Unicode escape sequences.

Although thisi18n and I10n design seems to work just fine, it has several problems. First of all,
the example you just saw addressed only string resources. Y ou need to do a bit more work to
support the localization of other types of resources such as calendars, date and time formatters, or
even images and colors.

To support non-string 110n resources—for instance, a locale-sensitive number formatter—you
could set the attribute value to the name of the class that implements your formatter. For example,
you could define an attribute as follows.

118NDemo-number_format-fr_FR: NumberFormat_FR

Y ou retrieve the attribute value and then instantiate this class. The following snippet of code
shows one way your MIDlet class could do this.

try
{
String name = getAppProperty(*'118NDemo-number_format-fr_FR'™);

// "name”™ now equals ""NumberFormat FR"
Class c = Class.forName(name);

NumberFormat FR nf = (NumberFormat_FR) c.newlnstance();

catch (InstantiationException ie)

{

217

catch (1llegalAccessException iae)

{

catch (ClassNotFoundException cnfe)

{
,

Of course, you must supply the MIDP-compliant Java class file with your application JAR filein
order for this scheme to work.

Ancther drawback of this use of application descriptorsisthat it abuses the JAD and manifest files
for application-specific features. Y ou might think that thisis simply a philosophical point, but it
relates to performance. To read the JAD or manifest files, you must enlist the help of the AMS. A
single call involves several components of the implementation. The JAD fileisn't really designed
for this kind of frequent access. Y ou might notice performance degradation when trying to read a
large file of 110n resources—or any other type of application-defined resources, for that matter.

Additionally, this single JAD file must accommodate all MIDlets in the MIDIet suite, making it
even bigger. For anything but a simple demonstration program, the JAD file becomes unwieldy as
the number of attributes increases.

Ancther problem is the room for manual error. A developer manually localizing the JAD file can
easily make subtle typographical errors in naming attributes. And the JAD file doesn't support the
insertion of comments that might help humans understand an attribute's use in the application.

Using Application Text Files to Define L10N Resources

A second i18n approach uses application-specific text files that contain localized attributes. An
application using this scheme might, for example, define one file of localized attributes for each
locale. The naming scheme could follow alocale designation, for insta283nce en_US . txt for
English, fr_FR.txt for French, ja JP.txt for Japan, and so forth. Listing 9.4 shows one
example of such afile containing name-value pairs of localized strings.

Listing 9.4 The name of this file is fr_FR.txt. It consists of French-language
versions of application strings.

alert: Alerte

alert_title: Bouton Pressé
alert_text: Le bouton a été pressé
cancel: Quitter

exit: Sortie

greeting: Mon troisiéme MIDlet!
help: Aider

item: Item

menu: Menu

ok: OK

sayhi: Dis bonjour

screen: Ecran

stop: Arreter

title: All6, tout le Monde

218

This approach is essentially the same as the previous one, except that now you must create and
maintain the resource file. Any resource files that you create must be part of the application JAR.
Recall that the MIDP specification prohibits direct access to files on the native platform.

Before going any further, it's important to reiterate that this scheme, like the first one, represents a
naive approach to building a comprehensive i 18n solution. Nevertheless, these schemes are
presented so you understand the benefits and tradeoffs of using different schemes and understand
how to use the various platform facilities and APIs available to you.

Listing 9.5 and Listing 9.6 contains code that implements one possible design that uses text
resource files. This code reads files formatted like the one shown in Listing 9.4.

Listing 9.5 The 118NDemo2 class uses streams to read text resource files. The
getResource() implementation now reflects the new design for retrieving
resources from files in the application JAR.

import javax.microedition.midlet_MIDlet;

import javax.microedition.lcdui.Display;
import javax.microedition.lcdui.Displayable;
import javax.microedition.lcdui.Form;

import java.io.DatalnputStream;

import java.io.lInputStream;

import java.io.lInputStreamReader;

10 import java.io.EOFException;

11 import java.io.lOException;

12 import java.io.Reader;

13 import java.io.UTFDataFormatException;

14 import java.io.UnsupportedEncodingException;

OCoO~NOUITA~WNPE

15

16 import java.util_Hashtable;

17

18 /**

19 The second version of the 118NDemo application.
20

21 <p>This version also demonstrates a naive way to
22 define localized resources. It reads a file

23 that"s part of the application JAR file (not the
24 JAD file) to load localized resources. The file
25 consists of a set of key-value pairs, one per

26 line, that represent localized strings. The

27 MIDIet must then parse the file contents and build
28 an internal hash table for lookup.

29

30 <p>This approach requires too much processing of
31 the stream that contains the file contents of the
32 localized resources. Furthermore, this approach
33 is not amenable to localized resources that are
34 not strings.

35 */

36 public class 118NDemo2 extends MIDlet

37 {

38 // The file that contains the resources for the
39 // active locale.
40 private String resourceFile;

42 // The locale specified for the execution of this
43 // MIDlet.

219

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
01
92
93
94
95
96
97
98
99

100

101

102

103

104

private String locale;

// The default character encoding set used by the
// platform.
private String encoding;

// The HashTable that contains the localized
// resources.
private Hashtable resources = new Hashtable();

// The Displayable. This component is displayed
// on the screen.
private HelloForm2 form;

// The Display instance. This object manages all
// Displayable components for this MIDlet.
private Display display;

// An instance of the MIDIlet.
private static 118NDemo2 instance;

/**

No-arg constructor.
*/
public 118NDemo2()

super();
instance = this;

}

/**
Gets the instance of this class that exists in
the running application.

@return the instance created when the
application starts up.

*/

public static 118NDemo2 getlnstance()

{

}

/**
Start the MIDlIet. Get the current locale name.
Use it to build the name of a file that
contains localized resources for the locale.
The resource file is located in the application
JAR file.

*/

public void startApp(Q

{

return instance;

// Retrieve the locale from the AMS software.

// The locale must be set before this MIDlet

// executes.

locale =
System.getProperty(‘'microedition. locale™);

// The names of the 110n resource files follow
// the form: <language>_<country>.txt.

// Construct the file name string and pass it to
// the method that opens the file and retrieves

220

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

// the contents.
resourceFile = locale + ".txt";
int status = loadResources(resourceFile);

if (status < 0)
{
quitQ);
return;

}

// Create a Displayable widget. Get the

// localized String that represents the title of
// the Form.

String formTitle = getResource('title™);

form = new HelloForm2(formTitle);

// This app simply displays the single form
// created above.

display = Display.getDisplay(this);
display.setCurrent(form);

/**
Loads the user-defined application resources
from the specified file. The file is part of
the application JAR file on a real device. The
J2MEWTK stores the file in the application JAR
fine in the application®s bin/ directory.

@param File the name of the user-defined
application resource file.

*/

private int loadResources(String file)

{
Class ¢ = getClass();

it (File == null)
{
return -1 ;
}
InputStream is = null;
is = c.getResourceAsStream(file);
if (is == null)
{
return -1;
¥ _
Reader reader = new InputStreamReader(is);
processStream(reader);

return O;
}
/**
*/
private void processStream(Reader stream)
if (stream == null)
{
return;

}
StringBuffer key = new StringBuffer();;

221

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

StringBuffer value = new StringBuffer();;
while (true)
{
// Read a line. 1It"s assumed that each line
// contains a single key and value,
// separated by a colon. If -1 we"ve
// reached the end of the file.
key.delete(0, key.length());
value.delete(0, value.length(Q));
int status = readLine(key, value, stream);

if (status == -1)
{

break;
3

// Put this resource in the hash table of
// application resources.
resources.put(key, value);

/**
Reads and processes the next non-blank line
from the stream. The format of the line is
expected to be <key>[\t]*:[\t]*<value>, where
<key> and <value> are tokens consisting of
alphanumeric or punctuation characters, but no
white space orcontrol characters.
*/
private int readLine(StringBuffer key,
StringBuffer value,
Reader stream)

{
if (key == null || value == null ||
stream == null)
{
return -1;
}
try
{
char c;

while (true)

// SKip new line characters.
while (true)

{

c = (char) stream.read();

if (c == "\n")

{]

continue;

}

break;
}
if (lisWhiteSpace(c) && 'isDelimeter(c))
{

key.append(c);

// SKip any leading white space.

222

227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287

while (true)
{

c = (char) stream.read();
if (isWhiteSpace(c))

{ i
continue;

b

break;

}

if (lisWhiteSpace(c) && 'isDelimeter(c))

{
key.append(c);

// Read key.
while (true)

{

= (char) stream.read();

break;
Ise

key .append(c);

“ MmO MmO

}

// SKip delimeter and any leading or
// trailing white space.

while (true)

{

c = (char) stream.read();

if (isWhiteSpace(c) || isbDelimeter(c))

{

continue;

value.append(c);
break;

}

// Read the rest of the value token.
while (true)

= (char) stream.read();
f (c == "\n")

break;

Ise

MM DS O

value.append(c);

}
}

break;

}

catch (10Exception ioe)
{

ioe.printStackTrace();

223

T (isWhiteSpace(c) || isDelimeter(c))

288 return -1;

289 }

290 return O;

291 }

292

293 /**

294

295 */

296 private boolean isWhiteSpace(char c)
297 {

298 if (c=""]] c == "\t")

299 {

300 return true;

301 }

302 else

303 {

304 return false;

305 }

306 }

307

308 /**

309

310 */

311 private boolean isDelimeter(char c)
312 {

313 if (c=":7)

314 {

315 return true;

316 }

317 return false;

318 }

319

320 /**

321 Returns the value associated with the specified
322 key from the bundle of application resources.
323

324 @param key the key of the key-value pair.
325

326 @returns the value associated with the
327 specified key.

328 */

329 private String getResource(String key)
330 {

331 if (resources == null)

332 {

333 return null;

334 }

335 return (String) resources.get(key);
336 }

337

338 /**

339 Quit execution. Requests the implementation to
340 terminate this MIDlet.

341 */

342 public void quit()

343 {

344 notifyDestroyed();

345 }

346

347 public void destroyApp(boolean destroy)
348 {

224

349

350 }

351

352 public void pauseApp(Q)
353 {

354

355 }

356 }

Listing 9.6 The Hel loForm2 class now uses the 1 18NDemo2.getResource()
API to retrieve 110n resources.

1 import javax.microedition.midlet.MIDlet;

2

3 import javax.microedition.lcdui.Alert;

4 import javax.microedition.lcdui.AlertType;

5 import javax.microedition.lcdui.Command;

6 import javax.microedition.lcdui.CommandListener;

7 import javax.microedition.lcdui.Display;

8 iImport javax.microedition.lcdui.Displayable;

9 import javax.microedition.lcdui.Form;

10

11 /**

12 This class defines a Form that displays some

13 simple text and a menu of commands. The purpose
14 of this class is to demonstrate 118n and 110n of
15 the user-visible attributes. It works with the
16 118NDemo2 class.

17 */

18 public class HelloForm2 extends Form

19 {

20 // The default title of this Form.
21 private static final String DEFAULT TITLE =

22 "Hello, World";

23

24 // The command listener that handles command
25 // events on this Form.

26 private MyCommandListener cl = new

27 MyCommandListener();

28

29 // The display instance associated with this
30 // NMiDlet.
31 Display display;

33 // A reference to this object®s associated MIDlet
34 // object.
35 118NDemo midlet;

36

37 // An alert displayed in response to the
38 // activation of some of this Form®s commands.
39 Alert alert;

40

41 private Command showAlert;

42 private Command sayHi;

43 private Command cancel;

44 private Command exit;

45 private Command help;

46 private Command item;

47 private Command ok;

48 private Command screen;

225

49 private Command stop;

50

51 /**

52 No-arg constructor. Sets a default title for
53 the form.

54 */

55 HelloForm2()

56 {

57 this(DEFAULT _TITLE);

58 }

59

60 /**

61 Constructor.

62

63 @param title the title of the Form.
64 */

65 HelloForm2(String title)

66 {

67 super(title);

68

69 midlet = 118NDemo.getlnstance();

70

71 // Add a string widget to the form.

72 String msg = midlet.getResource(''greeting™);
73 append(msg);

74

75 display = Display.getDisplay(midlet);
76

77 // Add a MyCommandListener to the Form to listen
78 // Tor the ""Back"™ key press event, which should
79 // make an Alert dialog pop up.

80 setCommandListener(cl);

81

82 showAlert = new

83 Command(midlet.getResource("'alert™),
84 Command.SCREEN, 1);

85 addCommand(showAlert);

86

87 sayHi = new

88 Command(midlet.getResource(''sayhi),
89 Command.SCREEN, 1);

90 addCommand(sayHi) ;

91

92 cancel = new

93 Command(midlet.getResource(‘'cancel™),
94 Command.SCREEN, 1);

95 addCommand(cancel);

96

97 exit = new

98 Command(midlet.getResource("exit"),
99 Command.SCREEN, 1);

100 addCommand(exit);

101

102 help = new

103 Command(midlet.getResource("'help™),
104 Command.SCREEN, 1);

105 addCommand(help);

106

107 item = new

108 Command(midlet.getResource("item),
109 Command.SCREEN, 1);

226

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

168 }

a

(0}

a

S

a

S

a

}

//
//
//
//
//
//
//
pri

i
{
p
{

}

ddCommand(item);

k = new
Command(midlet.getResource(*'ok™),

Command.SCREEN, 1);
ddCommand(ok) ;

creen = new
Command(midlet.getResource(''screen™),

Command.SCREEN, 1);
ddCommand(screen);

top = new
Command(midlet.getResource('stop™),
Command.SCREEN, 1);
ddCommand(stop);

This class simply listens for any command
activation. The HelloForm instance sets an
instance of this class as its command listener.
The object instance doesn®"t check the command
information, but simply displays a modal Alert
indicating a soft button was activated by the
user.

vate class MyCommandListener

mplements CommandListener

ublic void commandAction(Command c,
Displayable d)

String title =
midlet.getResource('alert_title™);
String msg = midlet.getResource(alert_text'™);

if (c == showAlert)
{
alert = new Alert(title,
msg,
null, AlertType.INFO);
alert.setTimeout(Alert.FOREVER);
display.setCurrent(alert, HelloForm2.this);

else if (c == sayHi)
{
alert = new Alert(title,
msg,
null, AlertType.INFO);
alert._setTimeout(Alert.FOREVER);
display.setCurrent(alert, HelloForm2.this);

}

if (c == exit)
{

}

118NDemo.getinstance() .destroyApp(true);

227

The most problematic aspect of this approach is that you, the developer, must create the
infrastructure that enables your applications to read and parse the resource files. Also, the
application must build the internal data structures that hold the localized resources read from the
files. The most challenging aspect of building this infrastructure is providing adequate stream
handling, particularly stream handling in support of reading string attribute values. The
MIDIet.getAppProperty() method used in the previous JAD file-based scheme abstracted
the details of the stream processing. But in this scheme, you must do all the work yourself.

TheClass.getResourceAsStream(String name) method isthe only way that aMIDlet
can read afile from the application JAR. The name parameter represents the file name with no
path information. This method returnsa java. io. InputStream object, which is a byte-
oriented stream.

Y ou must convert this byte stream to a character stream in order to read string attribute values into
your program. The only practical way to convert byte streams to character streamsis to use the
jJava.io. InputStreamReader class. You instantiate this class by passing your
InputStream object to the InputStreamReader constructor. In lines 137 to 154 of Listing
9.5, the application-defined 1oadResources () method builds the character stream.

To convert from bytes to characters, you need to know the character encoding of the resourcefile
you're reading. Listing 9.5 converts from 1SO8859-1 encoding (used by theen_US. txt file) to
Unicode. When reading character data into a program, the destination encoding is a'ways Unicode.
Java always represents characters and strings internally using Unicode.

Thefirst form of the InputStreamReader constructor in Table 9.1, used in Listing 9.5,
converts to Unicode from the default character encoding for the platform. If your resourcefile
uses an encoding other than the platform’s default, you must use the second
InputStreamReader constructor, which takes an argument that specifies the encoding of the
stream you're reading.

Animportant i18n and I10n design consideration is the choice of character encoding set for your
resource files. String attribute values are localized and need to be encoded in a character set that
supports the localization language. Attribute keys aren't localized, however, and they can be
written using ASCII. Y our choice of encoding should consider the following:

e Attribute keys and values should be encoded using the same character encoding set.
e All resourcefilesfor al locales should use the same character encoding set.

It's best to use a single character encoding set for the whole file. Otherwise, you need to build two
character-oriented streams: one to parse the attribute keys and one to parse the values. This
arrangement adds an unnecessary level of complexity to your stream processing.

Similarly, if you use a different character encoding set for the resources of each locale, your
application must build its character streams differently for each locale. It would have to have some
way to determine the resource-file encoding in order to build an appropriate character stream. It's
much simpler to use the same character encoding set for al locales.

Thetwo practical choicesfor character encoding sets are UTF-8 and Java Unicode escape
sequences. UTF-8 is avariable width code that retains the ASCII character encoding definitions. It
accommodates al charactersin all languages. Unfortunately, the MIDP stream classes don't have
any convenient methods like J2SE's DatalnputStream. readUTF() for reading UTF strings.
So, you'd till have to do your own stream parsing. The other complication is that now, you'd have
to write your resource filesin the UTF-8 format. Therefore, you'd need to have text editors and
other tools that support construction of UTF-8 encoded files.

228

The simplest design is to use Java Unicode escape sequences to encode string attribute values.
Each escape sequence represents a unique Unicode character. There are two advantages to this
approach. First, you can write these sequences to afile as ASCI| characters. Secondly, Unicode
supports all languages. Listing 9.4 uses 1SO8859-1. While this is adequate for French-language
resources, it won't support Korean, for example, whereas Unicode will. Y ou could use some other
multibyte encoding, but then you'd have to rely on input method editors and other tools to read and
write the resource file in that encoding.

If you use other multibyte character encoding sets, you need to consider compatibility and
maintainability issues. Do you have the tools—text editors, input method editors, and so forth—to
support al your locales? Do you have the same tools as your 110n team, or at least tools that are
compatible with theirs? Who will maintain your application? Do they have the same tools as
everyone else? These are al aspects to consider when choosing an encoding method.

Once you've constructed your InputStreamReader object, which is a character-oriented
stream, you can extract characters from it using its read () methods. These are inherited from its
superclass, java. io.Reader. These methods return aUnicode char. Table 9.1 liststhe
methods in the Reader class.

The only task left isto parse the characters you read. Unfortunately, the MIDP doesn't have any
handy classes like J2SE's StringTokeni zer classthat make it easy to delineate tokens. Y ou
must therefore parse the I10n resources yourself, one character at atime, using either of the two
overloaded forms of Reader . read(). If you've used afile format like the onein Listing 9.4,
then at the very least you need to separate the key field from the value field for each attribute,
eliminate white space, and so forth. In Listing 9.5, al the code between lines 127 and 318 is
dedicated to stream processing.

Table 9.1. java.io.Reader Constructors and Methods

Reader Constructor or Method Name |Entity Description

!nputStreamReader(InputStream Constructor|Builds a stream that converts

is) from the platform’s default
encoding to Unicode.

InputStreamReader (InputStream Constructor|Converts from the specified

is, String enc) encoding to Unicode.

void close() Method |Closes the stream.

void mark(int readAheadLimit) Method Sets the read-ahead limit for the
mark.

boolean markSupported() Method Indicates whether this stream
supports a mark.

int readQ) \Method |Reads a single character.

int read(char[] cbuf, int off, Method Reads "len" number of characters

int len) into the portion of the character
array, starting at the specified
offset.

boolean ready() Method Indicates whether there's
anything to be read.

void reset() Method Resets the stream to the last
mark position.

long skip(long n) Method Skips the specified number of
characters.

One major shortcoming of thisil8n design isthe extra coding you need to do to build the stream
parsers. Not only is there more work involved in developing this code, but also your application is

229

constrained by the runtime environment. File 10 can consume alot of runtime resources and yield
only marginally acceptable performance. Thisis an important consideration for MIDP applications.

In addition, you need to consider the need to create a portable library of 10 processing classes that
you can reuse for other applications. It would be awaste of development to have to reimplement
thisinfrastructure over and over again.

Beyond these shortcomings, this second approach is largely similar to the first one that used the
JAD fileto store 110n resources. Like the JAD file approach, this approach can accommodate
nonstring resources by defining attributes whose values are the names of locale-sensitive classes.

Using Java Class Files to Define 118N Resources

In this third approach, applications define Java classes that contain localized resources. Each class
contains resources for one locale. The files are compiled and packaged as part of the application
JAR. At runtime, the localized resources are then accessed by instantiating the appropriate class.

This design follows that of the J2SE resource bundle hierarchy. The J2SE

java.util .ResourceBundle and java.util.ListResourceBundle classesare
abstract classes that define aframework for building aggregations of arbitrary locale-sensitive
Java objects. The objects can be any Java objects.

Thisi18n design approach defines its own version of the ResourceBundle and
ListResourceBundle J2SE classes. Listings 9.7 and 9.8 show their implementations, which
define, respectively, proper subsets of the J2SE platform's Resource-Bundle and
ListResourceBundle classes. Although these implementations are proprietary, the method
signatures are the same as for their J2SE counterparts.

Listing 9.7 The ResourceBundle class defines a framework for aggregating

resources without implying details about the abstraction required to do the
aggregation.

import java.util _Hashtable;

/**
This class defines the base class for defining
localized application resources. It implements a
subset of the J2SE java.util._ResourceBundle class, but
adheres to the interface defined by that class.
*/
public abstract class ResourceBundle
{
/**
The "parent”™ resources. If a resource is not found
in this bundle, the parent bundle is searched.
*/
protected ResourceBundle parent;
/**
No-arg constructor.
*/
public ResourceBundle()

super();

/**

230

Gets the resource bundle with the specified class
name. The class name already contains a language and
country code designation in the standard format. For
instance, a resource bundle class name might be
""118NDemoResources_fr_ FR™.

@param className the full class name, such as
""118NDemoResources_fr_FR™

@returns the resource bundle object.
*/
public static ResourceBundle getBundle(String className)
throws I1l1legalArgumentException, MissingResourceException

{
return ResourceBundle.getBundle(className, "'");

}

/**
Gets the resource bundle with the specified base
name.

@param baseName the fully qualified class name of the
bundle to retrieve. For example, the base name of
"118NDemo_fr FR"™ is "118NDemo".

@param the locale string that represents the locale
for which the resource bundle should be retrieved.

The expected form is <lang>.<country> according to

I1SO 639 and ISO 3166, respectively.

@returns the resource bundle to return
*/
public static ResourceBundle getBundle(String baseName,
String locale)
throws IllegalArgumentException, MissingResourceException

Class c;

if (baseName == null)

{

throw new IllegalArgumentException(*'No basename.');

}

String className = baseName +
ResourceBundle bundle = null;

+ locale;

try
{

c = Class.forName(className);
bundle = (ResourceBundle) c.newlnstance();

catch (ClassNotFoundException cnfe)

{

throw new MissingResourceException(*'Class not found.™);

}

catch (InstantiationException ie)

{

throw new MissingResourceException("Can”"t instantiate.™);
catch (1l1legalAccessException iae)

{

throw new MissingResourceException(*'Can”"t access.");

231

}

return bundle;
¥

/**
Retrieves the object with the specified key. If the
key is not found, the parent bundle is searched.

@param key the object key
@return the object with the specified key
*/
public final Object getObject(String key)
throws MissingResourceException
{
Object obj;

if (key == null)
{

}
obj = handleGetObject(key);

throw new NullPointerException();

if (obj == null && parent != null)

{
obj = parent.getObject(key);
}
if (obj == null)
{
throw new MissingResourceException();
}
return obj;
}
/**

Searches this resource bundle for the object with the
specified key.

@param key the lookup key for the desired object.
@return the object with the specified key
*/
protected abstract Object handleGetObject(String key);
}

Listing 9.8 The ListResourceBundle class uses a "list" (in reality, a two-
dimensional object array) to aggregate resources.

/**
This class defines a resource bundle as a convenient
array of resources. It mimics the class of the same
name defined by the J2SE platform,
jJava.util._ListResourceBundle.

<p>This class is abstract. Applications are forced to
subclass it and define concrete classes that contain
localized resources.

<p>Concrete application specific subclasses should be
named so that the name contains the language and

232

country designation according to the ISO 639 and 1SO
3166 standards for languages and country codes,
respectively.

*/

public abstract class ListResourceBundle extends ResourceBundle

{
/**
No-arg constructor.
*/
public ListResourceBundle()

super();

// The array of resources in key-value format.
private static final Object[][] contents = null;

/**
Gets the array of resources.
@returns the two-dimensional array of key-value
pairs that this bundle defines.

*/

public abstract Object[][] getContents();

/**
Gets the object that represents the value associated
with the specified key.

@param key the key of the key-value pair.
@returns the object that represents the value of a
key-value pair.

*/

public final Object handleGetObject(String key)

{

Object value = null;

if (key == null)
{

return null;
Object[][]1 pairs = getContents();
for (int 1 = 0; 1 < pairs.length; i++)
if (key.equals(pairs[i][0]))
{
value = (pairs[i][1D);
}
}
return value;
}

}

The intention of this design is that application developers will create subclasses of
ListResourceBundle. Each subclass represents an aggregation of localized resources for a
specific locale. Listing 9.9 shows a concrete subclass of ListRe sourceBundle that provides
application resources localized for English. Note how the name of the class reflects the locale
supported. Not only does this naming scheme make it easy to manage the class during
development—it also makes it easy to locate and load the class at runtime.

233

Listing 9.9 A concrete subclass of ListResourceBundle easily defines
localized resources. Each subclass defines the "list" of resource values (actually
an array) and defines the getContents() method

import javax.microedition.lcdui.lmage;
import java.io.lOException;

/**

This class defines localized resources for the

118NDemo3 application. You retrieve the a resource by

calling the getObject() method in the ResourceBundle

class.
*/
public class 118NDemoResources_en_US

extends ListResourceBundle

{

// Holds one of the localized resources. We need to
// initialize this variable in this class"s static
// initializer.

private static Image applcon;

private Object[][] contents =

{
{"title", "Hello, World"}, // Form title.
{"greeting", "My third MIDlet"}, // Form text.
{"alert_title", "Button Pressed"}, // Alert title.
{"alert_text", "A button was pressed!"},// Alert text.

{"exit", "EXit"}, // TEXit" menu item.
{"menu", "Menu"'}, // "Menu" soft button.
{'cancel "Cancel"}, // "Cancel™ menu item.
{"stop", "Stop"}, // 'Stop" menu item.
{"ok'™, "OK"}, // "OK"™ menu item.
{alert”, "Alert"}, // "Alert” soft button.
{"'sayhi", "Say Hi""}, // 'Say Hi"™ menu item.
{"screen', '"'Screen"}, // 'Screen’™ menu item.
{"item" "Item"}, // 'ltem"™ menu item.
{"help", "Help"'}, // 'Help™ menu item.
{"app_icon", applcon} // Application icon.

}:

/**
No-arg constructor.

*/

public 118NDemoResources_en_USQ

{
super();

}

public Object[][] getContents()

{
return contents;

}

// Need the static initializer to initialize any

// variables that can®t be initialized in the contents
// array. For example, we can"t put an expression in
// the contents array to create an image and do the
// required exception handling.

static

234

{
try

{

applcon = Image.createlmage(*'il8n-en_US.png'™);

catch (10Exception ioe)

{
System.out._printIn(ioe.getMessage());
ioe_printStackTrace();

b

b
b

Classes that define localized resources for other locales should subclass ListResourceBundle
directly. Listing 9.10 shows the subclass containing resources localized for the French language.
The only effort required to produce this class is to change the suffix of the class name and edit the
text strings. Other than the name and the value of the attributes, the classisidentical to the English
version.

If the class defines resources other than text strings, then the objects appropriate for the locale
should be constructed when the classisinstantiated. The last object in the list is an example of a
nontext resource that's initialized when the class is instantiated. The class uses a Java static
initializer to instantiate static nonstring objects when the class is loaded. Our program needs to use
astatic initializer because each |localized resource class creates alocal e-specific image.

Listing 9.10 Each locale's resources are defined in its own corresponding subclass
of ListResourceBundle. This one defines attributes localized for French.

import javax.microedition.lcdui.lImage;
import java.io.lOException;

/**
A class that represents the localized resources for the
French language as spoken in France. Notice the use of
Unicode escape sequences in the string literals. Using
Unicode escape sequences in string literals means we
can write this file using only ASCII characters, making
it easier to maintain. It"s easy to add comments to
make the strings readable.
*/
public class 118NDemoResources_fr_FR
extends ListResourceBundle
{
// Holds one of the localized resources. We need to
// initialize this variable in this class"s static
// initializer.
private static Image applcon;

private Object[][] contents =
{
{"title", "AII\uOOf4, tout le Monde"}, // Form title.

// Form text: "My third MIDlet".
{""greeting"”, "Mon troisi\u0Oe8me MIDlet"},

// 'Button was Pressed".
{"alert_title", "Bouton a \u00e9t\u00e9 press\u00e9"},

235

// ""The button was pressed".
{"alert_text", "Le bouton a \u00e9t\u00e9 press\u00e9!"},

{"exit", "Sortie"}, // TEXit" menu item.
{"menu", "Menu"}, // "Menu" soft button.
{"cancel™, "Quitter"}, // "Cancel™ menu item.
{"stop", "Arreter'}, // 'Stop"™ menu item.
{"ok", "OK"}, // "OK"™ menu item.
{alert”, "Alerte"}, // "Alert” soft button.
{"'sayhi","Dis bonjour"}, // 'Say Hi"™ menu item.
{"'screen", "Ecran"}, // 'Screen’™ menu item.
{"item", "ltem"}, //7 "ltem”™ menu item.
{help’, "Aider"}, // "Help™ menu item.
{"app_icon", applcon} // Application icon.

}:

/**

No-arg constructor.

*/

public 118NDemoResources_fr_FRQ

{
super();

3

/**

Gets the contents of the resource bundle.

@returns the array of key-value pairs.
*/
public Object[][] getContents()
{

}

// Notice that the static initializer instantiates the
// Image class with a different image that that used by
// the en_US locale.
static
{

try

{

return contents;

applcon = Image.createlmage(""il8n-fr_FR.png');

}
catch (10Exception ioe)

{
System.out.printlIn(ioe.getMessage()):;

ioe.printStackTrace();

}
}
}

Listing 9.11 shows the 118NDemo3 program that uses this set of resource bundle classes. The
startApp() method of this MIDlet instantiates the correct resource bundle class. It builds the
name of the class by concatenating the base name of the family of localized resource files,
118NDemoResources, with the runtime locale designation. With only a few statements, the
application has access to all 110n resources.

Listing 9.11 The 118NDemo3 class instantiates the correct resource bundle class
for its runtime locale context. Resources of any Java type are easily accessed from
the bundle.

import javax.microedition.midlet_MIDlet;

236

import javax.microedition.lcdui.Display;
import javax.microedition.lcdui._Displayable;
import javax.microedition.lcdui.Form;

import java.util._Hashtable;

/**
The third version of the 118NDemo application.
<p>This version of I118NDemo uses a resource bundle to
define localized resources. The application determines
the platform®s current locale, and attempts to load the
associated bundle containing the correct localized
resources. |If it can"t find those resources, it loads
the U.S. English resources, represented by the en_US
language and country designation.

<p>This approach is the most desirable. Localized
resources other than strings can easily be supported.
*/
public class 118NDemo3 extends MIDlet
{
// The locale specified for the execution of this
// MIDlet.
private String locale;

// The resource bundle that holds the localized
// resources for the execution of this application.
private static ResourceBundle bundle;

// The Displayable. This component is displayed on the
// screen.
private HelloForm3 form;

// The Display instance. This object manages all
// Displayable components for this MIDlet.
private Display display;

// An instance of the MIDlet.
private static 118NDemo3 instance;

/**
No-arg constructor.
*/
public 118NDemo3()
{
super();
instance = this;

}

/**
Gets the instance of this class that exists in the
running application.

@return the instance created when the application
starts up.

*/

public static 118NDemo3 getlnstance()

{

if (instance == null)

{

237

instance = new 118NDemo3();

}

return instance;

}

/**
Gets the resource bundle used by this MIDlet. This
method is useful for other classes that need access
to the application®s localized resources.

@returns the MIDlet"s localized resources.
*/
public static ListResourceBundle getResourceBundle()

{

return (ListResourceBundle) bundle;

3

/**
Starts the MIDlet. Determines the current locale of
the execution environment and uses it to construct
the name of a resource bundle of localized resources.
Uses this name to build the name of a Java class that
is then loaded using Class. |If there is no matching
resource bundle, the default U.S. English resource
bundle is used.

*/

public void startApp(Q

{

// Retrieve the locale from the AMS software. The
// locale must be set before this MIDlet executes.
locale = System.getProperty("'microedition.locale™);

bundle = null;
try
{
bundle = ResourceBundle.getBundle(*'I18NDemoResources",
locale);
if (bundle == null)

bundle = ResourceBundle.getBundle(*'I18NDemoResources",

"en_US™);
}

catch (MissingResourceException mre)

{

mre.printStackTrace();

}

try

{
// Create a Displayable widget. Get the localized
// String that represents the title of the Form.
String formTitle = (String)
bundle._getObject('title™);
form = new HelloForm3(formTitle);

catch (MissingResourceException mre)

{

mre.printStackTrace();

}

238

// This app simply displays the single form created
// above.

display = Display.getDisplay(this);
display.setCurrent(form);

/**
Returns the value associated with the specified key
from the list of user-defined MIDlet resources iIn the
application JAD file.

@param key the key of the key-value pair.

@returns the value associated with the specified key.
*/
public Object getResource(String key)
{

Object resource = null;

try

{
resource = bundle.getObject(key);

catch (MissingResourceException mre)

{
}

return resource;

}

/**

Quit the MIDlet. Notify the implementation that it

can destroy all application resources. The

implementation will call destroyApp() .-

*/
public void quit()
{

notifyDestroyed();

}

public void destroyApp(boolean destroy)
{

}

public void pauseApp(Q)
{

}
}

Figure 9.1 shows the main screen produced by the 1 L8NDemo3 program when it runsin the
en_US locale. The program dynamically retrieves the localized resources defined in Listing 9.9.
Figure 9.2 shows the menu screen of the same application running in the fr_FR locale, which
uses the localized resources defined in Listing 9.10. The 118NDemo3 application code doesn't
change at all. It simply determines the locale context dynamically upon initialization and loads the
appropriate resource bundle.

Figure 9.1. All of the text seen by the user is localized. The program retrieves
localized English language resources using the same mechanism as it does for
every other locale.

239

ello, World
e third kD=t

Figure 9.2. The application logic retrieves French-language resources from the
object that defines the French-language application resources.

240

Bl pefaultcrayp L =100 |
-

?ll"l
Menu

3 i s bonjour
2 Guitter

- oo
= S D

An important point about this design is the clarity and the organizationa simplicity realized by the
use of Java Unicode escape segquences to encode non-ASCI| string literalsin the
ListResourceBundle subclasses. These files contain Java classes that you compile with the
rest of the application source code. The compiler transforms the Unicode escape sequencesin the
string literals to their Unicode binary values. Because Java compilers understand Unicode escape
sequences, you don't have to do any encoding transformation to get the localized text in the form
required by the runtime, namely, the binary Unicode character encoding values.

Examination of Listings 9.9 and 9.10 may not convince you of the benefits of using Unicode
escape sequences. After all, most text editors and most operating systems natively support
Western European languages such as French. For this reason, it's easy to produce localized
resources for Western European locales without resorting to Unicode escape sequences. For
example, users can produce French accented characters by typing atwo-key escape sequencein
most text editors, or insert them using a special function on a menu.

Perhaps another example would more clearly emphasize the benefits of using Unicode escape
sequences. Listing 9.12 shows the 118NDemoResources_ru_RU class, which defines the

241

localized resources for the Russian language. Figure 9.3 shows the appearance of the screen in
Figure 9.2 when thelocale is ru_RU, which represents the Russian language. Entering Russian
characters using a Western language system is more complicated than entering French characters.
The structure of the 118NDemoResources_ru_RU class, however—and the tools required to
construct it—didn't have to change to support the use of the Cyrillic a phabet.

Figure 9.3. Java Unicode escape sequences easily support all written languages.
Using a simple text editor, you can create localized resources for languages that
aren't represented on your computer keyboard.

T‘lll“
Menu

g C i, NpUGEe
2 MperpaTUTE

3 Brixog,

d [anio we

% MpepleT

BHUpGH & MEnu

Listing 9.12 The Russian localized resource class file also contains Unicode
escape sequences that enable you to represent Cyrillic characters without the use
of any special text editors or tools.

import javax.microedition.lcdui.lImage;

import java.io.lOException;

242

/**
This class defines localized resources for the
118NDemo3 application. You retrieve the a resource by
calling the getObject() method in the ResourceBundle
class.
*/
public class 118NDemoResources _ru_RU
extends ListResourceBundle

{

// Holds one of the localized resources. We need to
// initialize this variable in this class®s static
// initializer.

private static Image applcon;

private Object[][] contents =

// "'Hello, World".
{"title”, "\u0417\u0434\u0440\u0430\u0441\u0442\u0432\u0443\u0439,
\u041c\u0446\u04401""},

// "My third MIDlet".

{"'greeting"”, "\u041c\043e\u0439
\u0442\u0440\u0435\u0442\u0438\u0439 MIDlet!"},

// "Button Pressed".

{"alert_title",
"\u041a\u043d\u043e\u043f\u043a\u0430\u041d\u0430\u0436\u0430\u0442\u
0430"},

// A button was pressed!".
{"alert_text", "\u04la\u043e\u043e\u043f\u043a\u0430
\u0411\u044b\u043b\u0430 \u043d\u0430\u0436\u0430\u0442\u0430!1""},

// "Exit'" soft button.
{"exit", "\u0412\u044b\u0445\u043e\u0434"},

// Menu" soft button.
{"menu™, "\u041c\u0435\u043d\u044e'"},

// ""Cancel™ menu item.
{""cancel",
"\u041f\u0440\u0435\u043a\u0440\u0430\u0442\u0446\u0442\u044c"},

// 'Stop™ menu item.

{"stop", "\u0421\u0442\u043e\u043f"},
// "OK"™ menu item.

{"ok”, "0K"},

// "Alert" soft button.
{"alert", "\u0412\u043d\u0446\u043c\u0430\u043d\u0446\u0435"},

// "'Say Hi" menu item.
{"sayhi",""\u0421\u043a\u0430\u0436\u0446
\u043f\u0440\u0446\u0432\u0435\u0442"},

// 'Screen' menu item.
{"screen", "\u042d\u043a\u0440\u0430\u043d"},

// ltem" menu item.
{"item", "\u041f\u0440\u0435\u0434\u04c3\u0435\u0442"},

243

// "Help"™ menu item.
{"help", "\u041f\u043e\u043c\u043e\u0449\u044c"},

// Application icon.
{"app_icon", applcon}

/**
No-arg constructor.
*/
public 118NDemoResources _ru_RUQ
{
super();

public Object[][] getContents()
{

}

// Need the static initializer to initialize any
// variables that can"t be initialized in the contents
// array. For example, we can"t put an expression in
// the contents array to create an image and do the
// required exception handling.
static
{

try

{

return contents;

applcon = Image.createlmage(""il8n-ru_RU.png™);

catch (10Exception ioe)

{
System.out._printIn(ioe.getMessage()):;

ioe.printStackTrace();

}
}
}

If you're till not convinced, look at Listing 9.13, which shows the same application resources
localized for Japanese. Figure 9.4 shows one of the application screens in Japanese. The
118NDemoResources_ja JP classwas created with the same ASCI|-based text editor.
Japanese characters can't be entered from a conventional text editor without the support of an IME.
And, if you do use an IME, you must ensure that it uses Unicode to write the string literals to the
file. Otherwise, your application would have to do a character-encoding transformation.

Figure 9.4. Japanese-localized resources are treated the same way as those of
other languages. Of course, your system must have the appropriate fonts to
display these characters.

244

Fantll
RE YRS ANE
L f=

DRI T i =
L A1

Listing 9.13 Unicode escape sequences accommodate all elements of all the
world's written languages, including East Asian languages such as Japanese.

import javax.microedition.lcdui.lImage;
import java.io.lOException;

/**

This class defines localized resources for the

118NDemo3 application. You retrieve the a resource by

calling the getObject() method in the ResourceBundle

class.
*/
public class 118NDemoResources_ ja JP

extends ListResourceBundle

{

// Holds one of the localized resources. We need to
// initialize this variable in this class"s static

245

// initializer.
private static Image applcon;

private Object[][] contents =
{
// “'Hello, World"
{"title”, "\u24164\u3055\u3093, \u3053\u3093\u306b\u3061\u306F"},

// "My third MIDlIet".
{"greeting’”, "\u79cl1\u306e 3 \u3063\u3081\u306e MIDlet"},

// 'Button Pressed".
{"alert_title",
"\u30dc\u30bf\u30F3\u304c\u62bc\u3055\u308c\u307e\u3057\u305F"},

// A button was pressed."
{"alert_text",
"\u30dc\u30bf\u30F3\u304c\u62bc\u3055\u308c\u307e\u3057\u305F!""},

// TEXit" menu item.
{"exit", "\ub51fa\53e3"},

// "Menu" soft button.
{"menu”, "\u30el\u30cb\u30e6\u30fc'"},

// "Cancel™ menu item.
{"cancel", "\u30ad\u30e4\u30f3\u30bb\u30eb"},

// 'Stop™ menu item.
{"stop", "\ub505c\u6b62"},

// "OK™ menu item.
{"ok™, "OK"},

// "Alert"” soft button.
{"alert", "Alert"},

// 'Say Hi" menu item.
{"sayhi","\u30cf\u30a4"},

// 'Screen' menu item.
{"screen", "\u30b9\u30af\u30ea\u30f3"},

// "'ltem" menu item.
{"item", "\u9805\u76ee"},

// "Help"™ menu item.
{"help', ""\u308d"},

// Application icon.
{"app_icon", applcon}

3

/**
No-arg constructor.
*/
public 118NDemoResources ja JP()

{
super();

246

public Object[][] getContents()
{

return contents;

}

// Need the static initializer to initialize any
// variables that can"t be initialized in the contents
// array. For example, we can"t put an expression in
// the contents array to create an image and do the
// required exception handling.
static
{

try

{

applcon = Image.createlmage("'il8n-ja JP.png'™);

catch (10Exception ioe)

{
System.out._printIn(ioe.getMessage()):;

ioe.printStackTrace();
}

}
}

Listing 9.14 shows the I18NDemoResources zh CH.javafile, which defines localized resources
for simplified Chinese. Figure 9.5 shows another screen from the 118NDemo3 application, this
time displaying simplified Chinese characters.

Figure 9.5. This screen displays text localized for simplified Chinese. Although
Japanese Kanji writing uses Chinese ideographs, different fonts represent the two
languages. You must ensure that you have fonts for both locales.

247

Listing 9.14 This file defines localized resources for the zh_CN locale, China, for
the 118NDemo3 application.

import javax.microedition.lcdui.lImage;
import java.io.lOException;

/**
This class defines localized resources for the
118NDemo3 application. You retrieve the a resource by
calling the getObject() method in the ResourceBundle
class.

*/

public class 118NDemoResources_zh_CN
extends ListResourceBundle

{
// Holds one of the localized resources. We need to
// initialize this variable in this class®s static
// initializer.

248

private static Image applcon;

private Object[][] contents =

{
// "Hello, World"™ form title.

{"title”, "\u54c8\u7f57\ud4el6\754c"},

// "My third MIDlet" form text.
{"greeting’, "\u6211\u7684\7b2c\u4e09\u4187 MIDlet"},

// ""Button Pressed" alert title.
{"alert_title", "\u6309\u4e0b\u6309\u9215"},

// A button was pressed!" alert text.
{"alert_text", "\u6309\u4e00\u4187\u6309\u9215!1"},

// TEXit" menu item.
{"exit", "\u767b\u51fa"},

// "Menu" soft button.
{"menu", "\u76ee\u5f54"},

// "'Cancel”™ menu item.
{"'cancel", "\u53d6\u6d38"},

// 'Stop"™ menu item.
{"stop", "\ub505c\u6b62"},

/7 "OK" menu i1tem.
{"ok"™, "OK"},

// "Alert” soft button.
{alert”, ""\u8b66\u793a"},

// "'Say Hi'" menu item.
{"sayhi", "\u55e8"},

// ''Screen' menu item.
{"'screen’, "\u87a2\u5e55"%},

// ltem” menu item.
{"item", "\u9879\u76ee"},

// 'Help™ menu item.
{"help"™, "\u8bf4\u660e"},

// Application icon.
{"app_icon", applcon}
¥

/**
No-arg constructor.
*/
public 118NDemoResources_zh CNQ)

{
super();

public Object[][] getContents()
{

return contents;

249

}

// Need the static initializer to initialize any

// variables that can"t be initialized in the contents
// array. For example, we can"t put an expression in
// the contents array to create an image and do the
// required exception handling.

static

{
try

{

applcon = Image.createlmage(""i18n-zh_CN.png');

catch (10Exception ioe)

{
System.out.printIn(ioe.getMessage());
ioe.printStackTrace();

¥

}
}

Using Java class files has several advantages over the previous two designs. First of all, it
eliminates the complex stream construction and parsing of text files that you saw in the last
approach. Accessing resourcesis as simple as instantiating a class. More important, resource
bundles can easily accommodate any Java objects—not only strings—as 110n resources. The first
two approaches presented in this chapter had to define attributes whose val ues were the names of
classes to instantiate and then instantiate those classes after reading and parsing the resource file.
The resource-bundle approach instantiates all objectsimplicitly when the bundleis created. And
resource bundle classes have a small footprint, using less runtime-memory resources than the
previous approach.

The resource-bundle approach aso facilitates easy porting of applications to J2SE environments.
The implementations of the resource bundle classesin Listings 9.7 and 9.8 create only the subset
of features needed. But their adherence to the interfaces of the J2SE versions means that your
application's subclasses of ListResourceBundle are upward compatible.

Resource bundles also lead to better maintainability and comprehensibility. The application-
specific ListResourceBundle subclasses can be maintained easily with only an ASCII-based
text editor. Any ASCII based text editor can read and write the ASCII characters or Java Unicode
escape sequences present in the resource bundles. Moreover, because these are Java sourcefiles,
developers can insert comments that clearly document each resource and the context in which the
application usesit.

One final advantage offered by the resource bundle approach is that you can quite easily define
multiple resource bundles per locale. Y ou could define, for instance, one bundle for text that
appears on Ul components, another specifically for error messages, one for images, and so forth.
Of course, you can organize these as appropriate for your application.

The use of Java classfilesto define localization resour ces offers clarity
of design, maintainability, and extensibility and accommodates any kind
of Java localization object. Despite these advantages, however, you
should be awar e of the tradeoffsinvolved compared to thefirst two
approaches presented in this chapter.

Installing several Java classfilesfor localization resour ces might require
mor e device storage than you can afford. The most prominent problem
in MIDP development is memory consumption. Although thefirst two

250

approaches are awkward in some ways, they consume less memory
resour ces than the Java class file approach. Sometimes, when you can't
afford extra memory, you can afford afew extra seconds of application
startup timeto read and par se 110n resour ces.

One possible compromiseisto eliminatethe ResourceBundle
inheritance hierarchy and provide a single class that containsthe10n
resour cesfor each locale. Ship the correct 110n classfilefor the
application'starget locale. Here, you'retrading flexibility for efficiency.
Y ou also lose upwar d compatibility with J2SE, but thismight not be a
concern.

Application Provisioning of L10N Resources

All three of the design strategies presented in this chapter involve inclusion of 110n resources with
the rest of the application code. In real wireless network environments, things might work
differently. Some wireless carriers already host application-provisioning systems, which support
the dynamic discovery, retrieval, and installation of Java applications on mobile devices. Soon, all
carriers might have such systems. Application provisioning is the subject of chapter 10.

Most likely, these systems will provide away for devices to communicate details of their runtime
environment and receive from the server only the resources that they need. For instance, the
device AM S might indicate the device's locale context and only download from the provisioning
system the 110n resources for that locale.

This interaction between the device AM S and the provisioning server precludes the need to install
110n resources for multiple locales on the device. It also provides away for the AMSto indicate to
the user whether alocale is supported before the application starts up. Nevertheless, developers
could find it easier to package compiled 110n class files with the rest of the application’s code.
Application development, deployment, delivery, and maintenance issues should be considered as
part of every design.

Chapter Summary

Internationalization is the practice of generically enabling an application to dynamically retrieve
and use locale-sensitive resources at runtime. Internationalization is an important feature for
MIDP applications. An internationalized application will appeal to a greater user audience.

Internationalizing an application means generically enabling it to retrieve at runtime resources that
are compatible with the local e context in which the application is running. Localization is the
process of providing the resources for one or more locale contexts.

Localization is the practice of creating locale-specific resources for an internationalized program
to access at runtime. Internationalization and localization efforts are related. The organization and
format of localization resources must reflect the internationalization scheme and design.
Comprehensive internationalization and localization solutions must address |ocale-sensitive
operationsin the following application areas:

e messaging
e date, time, numeric, and monetary value formatting
e calendar support

251

e |ocale-sengtiveicons, images, and colors

The capabilities available in the MIDP platform influence the choice of i18n design and affect the
feasibility of implementing certain designs for MIDP applications. The MIDP platform provides
the following three main mechanisms that can be used for building i18n capabilities:

e user defined MIDIet suite attributes: application descriptor file
e support for retrieval of resources (files) from the MIDlet suite JAR file:
Class.getResourceAsStream(String resourceName)

e conversion between character-encoding sets: java. io package

MIDP application designers must also consider performance, maintainability, and deployment
actors when designing i18n and | 10n solutions.

252

Chapter 10. Application Provisioning

o Concepts
e TheProvisioning Process

e Preparing Applications for Provisioning Systems

So far, you've learned how to develop MIDP applications and execute them using an emulator. In
the real world, however, you need to deploy your applications to real mobile devices. Mobile
devices need the capability to support installation of applications by users. The process that
supports this kind of dynamic application installation on pervasive devicesis called application
provisioning. The systems that support the provisioning process are called application-
provisioning systems or simply provisioning systems.

In the context of this chapter and book, the term provisioning refers to the delivery of software
applications to mobile devices. For wireless carriers and operating companies (commonly called
OpCos), provisioning has a very different meaning, namely, the setting of device and station
identification module (SIM) attributes for voice, data, and other traditional services.

This chapter gives you an introduction to application-provisioning systems. Its purposeisto
introduce devel opers to the concepts surrounding application provisioning and to discuss the
issues involved in preparing applications for deployment to provisioning systems.

This chapter doesn't teach you how to design or build an application-provisioning system.
Provisioning systems are complex enterprise applications, and a discussion of their design or
construction is beyond the scope of this book.

Concepts

Manufacturers typically preinstall the software that you see on mobile devices before the devices
leave the factory. But it will become less and less feasible for manufacturersto preinstall all this
software in the factory. Devices won't have enough memory resources to store the increasing
number and variety of applications that users will demand. Furthermore, the preinstalled
applications can never satisfy the requirements of all users. Therefore, users need the ability to
initiate the installation of software on their mobile devices as they do with personal computers.
This ability enables users to change the set of applications they have at any given time,
uninstalling some applications and installing new onesto circumvent limitations in device storage

capacity.

In order to provision applications to their devices, users need the ability to discover, select,
purchase, download, and install applications using their mobile devices. Because mobile devices
don't necessarily have the ability to connect to any network or other device through means other
than the air interface supported by the wireless network, carriers must support installation of
MIDP applications over-the-air (OTA). At the time of thiswriting, OTA provisioning is the
cornerstone of application provisioning for mobile devices.

Currently, however, many wireless devices are starting to appear that enable download of
applications through some mechanism other than OTA, such as through the use of infrared ports,
tethering, flash memory modules, and so forth. Nevertheless, it's possible that some mobile
devices will continue to have only wireless connectivity through the wireless network's air
interface for some time yet.

253

Wireless carriers and other service providers who support application provisioning for their users
provide the provisioning systems with which their users communicate. These provisioning
systems support OTA provisioning for mobile devices in conjunction with the carrier's wireless
network and wireless Internet gateway (WIG). Figure 10.1 shows one possible logical schematic
diagram that reflects the role of a provisioning system in the carrier's network infrastructure.

Figure 10.1. An application-provisioning system interfaces to the carrier's wireless
Internet gateway in order to be able to communicate with the mobile devices it

serves.
é,%’a o e’ % ﬁ ':—!‘
atatian < '
Risdlicy
towor Wab Apphcation
\/ /Hw .
Application regisiration
/ Wirgless
Wimieead Inbarnet Carer nabwork
nadwert et _\\
Base
slation A
B
5] Applicatian provigianing
% Application-
oo [aterichsning
Do wyean
)
5

OTA provisioning requires the establishment of a"phone call"—or a data connection in data
networks such as 2.5G or 3G networks—to connect the mobile device, which is the client, to the
provisioning server. On the server side, the provisioning manager conceptually represents the
primary component of the provisioning system that manages the various stages of the provisioning
process. These stages include dynamic discovery, presentation of content descriptions, brokering,
delivery, transaction commit, and billing.

On the device, user agent software communicates with the provisioning manager. User agent
software must be compatible with the communication mechanism defined by the provisioning
manager. Two possible schemes are Wireless Application Protocol (WAP) discovery with HTTP
delivery and WAP discovery with WAP segmentation and reassembly (SAR). Wireless carriersin
certain markets, particularly in Japan, are building infrastructures that support TCP/IP to the
handset. These infrastructures will support HTML (XHTML) delivery to the handset by HTTP
transport, replacing WAP. As this model becomes more prevaent in 2.5G and 3G network
implementations, provisioning manager interfaces will change accordingly.

Device AMS can be built to have the capahility to act as the user agent software, or at least to
interface closely with the device's micro browser. Alternatively, devices contain dedicated
discovery application (DA) software, whose job it isto identify MIDlet suites for user download.
Among other responsibilities, DA software must be able to place provisioned applicationsin a
location accessible by the AMS. The term Java application manager (JAM) is used to describe the
AMS for systems that specifically support Java application provisioning.

The user agent software on client devices must work in collaboration with the provisioning system
in order to be able to communicate using well-defined interfaces over acommonly accessible
communication mechanism. Typically, wireless networks use HTTP over some transport protocol

254

to enable application level communications with mobile devices. In fact, the Over The Air User
Initiated Provisioning Recommended Practice, Addendum to the Mobile Information Device
Profile document requires that OTA provisioning support the HTTP protocol. HTTP is the only
protocol that must be supported. Y ou can find this specification at
http://java.sun.com/products/midp/. Incidentally, it's likely that the recommendationsin this
document will become part of the MIDP-NG (next generation) specification.

The motivation for application provisioning is threefold:

e to automate the process of determining the compatibility of applications for the
environments to which they are downloaded,

e toenablethe delivery of applicationsto devices, and

e tosupport amicro-billing model, which is an attractive way for MIDP application
developersto sell their content.

Although provisioning systems and device user agent software help automate the provisioning
process, users must perform the steps that require human intelligence, such as specifying search
criteriafor locating applications, selecting applications, initiating and approving the purchase of
software, and approving the download of software.

The provisioning process centers on an exchange of information between client and server. User
agent software on the client accesses information about the client environment and communicates
it to the provisioning manager. The provisioning manager software presents information about
registered applications to the mobile device. It obtains this information from its repository of
registered applications. The provisioning system accesses application-specific information, such
astheinformation defined in the application JAD or manifest files. Together, client and server
exchange information, negotiate rights, privileges, and capabilities, and collaborate to deliver
applications to the mobile device. Provisioning managers that are controlled by OpCos aso have
access to user information such as user profiles and preferences.

Applications can be standalone client applications, distributed applications, or client-server
applications that require a client piece and a server piece (a network service component). For
instance, an application might consist of a component that executes on the mobile device and
communicates to a server that runs on a server in the carrier's network or in the service provider's
network (a corporate customer's network, for example). The application descriptor could stipulate
that the server component should be installed before any client components can be provisioned to
devices. The provisioning system can determine whether the network environment is capable of
supporting the application regquirements. Other issues include determining how and when server
components should be instantiated or initialized or whether the network can support continuous
availability of the components.

Provisioning applications a so involves considerations of application lifetime and reversal of the
provisioning process. Some applications might stipulate that they can be executed a fixed number
of times by the user or that they can be used for a certain amount of time. This could be applicable
to trial software or to certain types of software licenses. Applications might stipulate that they
should not be persisted on devices, but rather downloaded each time from the provisioning server.
The server can check for expiration of the terms of usage for particular users or even for particular
devices.

The provisioning process might involve the selective removal of applications to make room for
new applications. Support for this feature requires negotiation between the device's user agent
software and the provisioning manager software. Application removal would require user
notification.

255

http://java.sun.com/products/midp/

Several commercia vendors currently offer application-provisioning systems. Many of their
features are designed specifically to support the provisioning of J2ME applications. That is, many
of their features address the challenges of provisioning in wireless environments.

The Provisioning Process
Practically speaking, the provisioning process involves two major phases:

e application registration
e provisioning registered applications to devices

Thefirst step, registration, makes an application available to be provisioned. The second step,
provisioning of registered applications, consists of al the steps that are required to realize the
installation of an application on a mobile device. The tasks that comprise the second phase are
sometimes grouped into the following three categories:

e discovery— application search

e brokering— presentation of application information to users, software license negotiation,
purchase verification, nonrepudiation of purchase

e download— use authentication, application download, installation of an application on a
device, installation verification, removal of installed applications, installation of server-
side resources, billing transactions

In the remainder of this section, however, I'll simply introduce the individual tasks without
reference to these three categories.

Application Registration

Before applications can be provisioned to devices, they must be registered with the provisioning
system. A registered application is one that's known to the provisioning system and can be
delivered to devices.

Theindividual or organization that develops an application typically initiates the application
registration process. Before a developer can register an application, however, he or she must
typicaly register as an authorized user of the carrier's provisioning system or as a member of the
carrier's developer program. The provisioning system might support developer registration
through the Web using an HTM L -based Web interface. Subsequent to user registration, the
developer can upload applications.

Typically, provisioning systems support two main mechanisms for managing registered
applications. Using the first approach, the developer uploads the application JAR file, JAD file,
and manifest file as specified by the provisioning system. The provisioning system physically
maintains these items in its repository. Using the second approach, the developer simply registers
aURL and aJAD file (or the metadata needed to build the JAD file) that indicates the location
from which the provisioning manager can retrieve the application as needed during provisioning.
The developer or even athird party may physically maintain the application JAR file.

Not all provisioning systemswill support both the ability to internally
persist JAR filesand the ability to reference external JARs. Asa
developer, you should consider which schemes ar e acceptable and which
ones conform to the usage scenarios that you envision for your
applications. Nontechnical issues arise—such as legal issues about

256

ensuring security against unauthorized accessto your application—
which might contain valuable intellectual property or service-level
agreements (SL As) with the customer or carrier.

It's the developer's responsibility to supply al information in the form required by the
provisioning system. At registration time, the developer must provide all information that will be
needed during the provisioning process. At the very least, you'll need to provide the application
JAD and manifest files, which contain information about the application's platform, device, and
runtime resource regquirements. Additionally, the provisioning system may support the upload of
one or more proprietary files for the purpose of providing additional information about the
application. For instance, you might be able to supply an XML file that describes your preferences
for licensing, purchase fees, approved methods of purchase, and so forth. It's possible, of course,
to define attributes in the application JAD file that describe these areas. Thisis a good example
that demonstrates why devel opers must understand the capabilities of the provisioning system or
systems they use.

Application Search

Application search is the process by which users discover applications of interest. It's the first step
in the provisioning process that involves the end user. Most provisioning systems will typically
provide some WML interface (or XHTML) for users to discover applications through their mobile
devices. Mobile devices that are designed for OTA download have an HT TP-based micro browser
that, most likely, will be integrated to some degree with the device's user agent software.

The actual user experience with the provisioning system varies according to specific product
characteristics and behavior. Some provisioning systems also provide HTML interfaces that are
oriented to PCs. Users can do al the discovery and brokering using their PCs and use their mobile
device only to perform the download.

Asyou learned in the previous section, one of the main goals of provisioning is to facilitate the
discovery of applications that are compatible with the mobile device environment. The
provisioning manager compares device environment attributes with application suite attributes. It
can ensure that incompatible applications are never downloaded to a device. The mobile device
environment consists of the following four contexts in determining compatibility between
applications and device environments:

user context

device context

J2ME platform environment context
application requirements

The provisioning process must consider the rights and privileges of the mobile device user. Users
may be classified according to various categories that define their privileges, such as service plan
or account status. Not all users necessarily have the same privileges. The result is that not al users
may be able to browse all applications registered with the server. Many of these classifications are
nontechnical in nature.

Consideration of the device context, however, ismore critical to the proper technical functioning
of applications. Provisioning systems require information about the device context, for instance,
how much memory storage it has, its runtime resources, and so forth. For example, if the device
doesn't have enough overall memory to store the application suite, the provisioning manager
should prohibit its download. If there's not enough available memory, the AMS (JAM) will notify
the users that they must make room for the application by deleting some other content.

257

Consideration of the device context is related to the application context. Applications have certain
minimum requirements for their execution. For example, an application might require a certain
screen size and resolution or color capability to run effectively. It fmight require certain
manufacturer-specific libraries, minimum levels of runtime memory, a certain minimum RMS
data store size, and o forth.

Consideration of the 2ME environment that an application requiresis asimportant asa
consideration of the native device environment. Applications probably require that the device
support a certain version of the MIDP and CLDC. Usually, thiswill be the MIDP and CLDC
under which the application was devel oped.

Whatever the particular characteristics of the client environment, they're transmitted to the
provisioning server to be used as search parameters. The provisioning system maps these
characteristics to the search categories it supports. Provisioning systems vary in their
sophistication and in their ability to use certain search categories.

Search results represent afiltered subset of the applications registered with the provisioning
system. They should contain only those applications that are compatible with the client context. At
the very least, provisioning systems will limit search results according to user, device, and 2ME
platform criteria. Some provisioning systems might also support more advanced search behavior,
such as the ability to correlate a device's location information with applications that are suitable
for that location in terms of functions, localization, and so forth.

Information about the client environment is usually sent as HTTP headers in the HTTP request
from the device's browser to the provisioning manager. The user agent and browser communicate
to construct the HTTP request that interfaces to the provisioning server's search function.

In less-automated provisioning systems, users might need to enter values for search categoriesin
their device's browser. The provisioning system might provide an HTML interface that allows
users to specify search characteristics.

In more-automated systems, the provisioning system retrieves user preference information from
the carrier's network. The user agent can forward the mobile station identification number
(MSISDN or MSN) to the provisioning server. If the provisioning server supports integration with
external systems such as directory servers, it can obtain user information from the carrier's
directory server. In order for this approach to work, the carrier must provide users with the ability
to enter their search preferences for provisioning in their user records.

The greater the level of automation, the more efficient the search process becomes, and the less
likely it isto produce errors. These are important considerations for both carriers and users.
Manual browsing is time consuming and prone to error. It's probably safe to say that manual
navigation and surfing through WML (or XHTML in upcoming systems) pages requires long
connection times. This incurs high airtime charges for circuit-switched networks (2G networks)
and high packet transfer charges for packet-switched networks (2.5G and 3G networks), which is
undesirable for users. It aso occupies bandwidth, which is undesirable for carriers.

As part of the search process, the provisioning system lists search results for the user. The system
may organize the results by group, device type, J2ME platform supported, type of software license,
software purchase price, or some other categorization. Some systems may support multilevel
sorting so that users can rank applications and specify the organization of search results according
to multiple criteria.

258

In general, it'simportant that application developersbe awar e of the
features supported by the provisioning system. Familiarity with
provisioning-system capabilities enables developer sto take advantage of
the system'sfeatures.

Application search isa good example of the benefits. For example, if the
developer can provide metainformation for the sear ch categories and
types of searches supported by the provisioning software, userswill have
mor e success and accur acy in locating suitable applications. The amount
of exposure an application receives might positively affect its

commer cial success.

Familiarity with provisioning system features and capabilities enables
developersto prepare their application descriptor filesand

metainfor mation for mor e effective and fruitful use with the
provisioning system.

Compatibility Verification

Compatibility verification is the process of verifying the compatibility of an application for a
client in terms of the device, user, and 2ME platform contexts. All provisioning systems should
prevent the download or even the discovery of incompatible applications.

The provisioning manager can check an application's compatibility with the target device by
comparing device and application metainformation. All provisioning systems should prohibit the
download of application suites that are incompatible with the target device environment.

In fact, the compatibility verification issue is one reason why the MicroEdition-
Configuration andMicroEdition-Profi le atributes are required JAD file attributes. The
provisioning system uses thisinformation in its search for compatible applications.

Purchase Verification and Non-Repudiation

Purchase verification is the process of ensuring that users are charged for the acquisition of
software that requires a purchase fee, and that they are charged only for software they acquire.
Non-repudiation encompasses the processes of verifying that the user did indeed choose to acquire
the software for which he or she is charged and accurately repudiating any attempts by the user to
deny the occurrence of transactions.

Provisioning systems execute these steps before they generate a billing event. They must support
purchase verification and non-repudiation in order to support integrity of financial and commercial
transactions. All provisioning systems should support secure communications for monetary
transactions, transmission of purchase information, and information about non-repudiation.

User Authentication

User authentication is simply the process of verifying, through the user agent, that a user is who
he or she claimsto be. User authentication requires that the user agent forward information about
the user to the provisioning manager. Typically, the user agent forwards this information in the
form of HTTP headersin the device browser's HT TP request to the provisioning manager. The
request will most likely usethe HTTP user-agent header request field to identify the user agent
aswell.

259

There are some wireless systems that don't store much user information on mobile devices. In such
cases, the server must associate user information with the device information—the device's MSN,
for instance. As discussed previoudly, provisioning systems can interface with other carrier
systems, such as authentication servers, Lightweight Directory Access Protocol (LDAP) servers,
or wireless Internet gateway (WIG) servers to acquire the balance of the required user information.

Application Software License Negotiation

The software license negotiation process involves the presentation of licensing terms to the user
and the user's acknowledgement of his or her acceptance of the terms. This step occurs before
application download. This step might be a good candidate for execution on a PC instead of on a
mobile device.

Applications that stipulate the requirement to purchase alicense must provide al the information
required for the license negotiation process. This information must be available to the provisioning
system. Application-specific information, such as the type of license, the licensing terms, and so
forth, can be included in the application JAD file.

Application Download

Application download is the process of physically sending an application to a mobile device.
Typically, this process uses an HT TP download mechanism and the device's browser to download
the software.

Advanced systems will support the ability for the user to control downloads. One example of user
control isthe ahility for the user to restart an interrupted download. An interruption in download
can occur, for example, if the call or data connection is dropped. At the time of thiswriting, the
best we can hope for is that the device cleans up partial downloads.

Some systems support only the ability for the user to restart the download from the beginning.
Even in this case, the user should not have to go through the complete discovery, authentication,
and purchase cycle. The provisioning system should maintain enough state information to let the
user proceed directly to the download step.

More advanced systems will enable the user to restart download from the point at which
interruption occurred. This feature is desirable because it saves air time and bandwidth usage.
Advanced provisioning systems also support both nonsecure (HTTP) and secure (HTTPS/SSL)
application downloads.

Application Installation and Installation Verification

Application installation is the process of installing software that already resides on the device.
When an application is downloaded, the browser must have some interface to the device AMS,
which is the component that stores the application on the device. The AMS is responsible for
installing software. The user, however, initiates software installation through interaction with the
AMS. The AMS stores applications in a device-specific location, which is different from the
MIDP RMS that you learned about in chapter 7.

The CLDC specification doesn't require that the device AM S store MIDP applications, because
not all mobile devices support a persistent storage mechanism such as afile system. An alternative
mechanism would be for the AMS to support download of the class files required from the
provisioning system to execute an application. The VM can simply load the Java classfiles upon
downloading them, execute the application, and then discard the class files when the installation
process is compl ete.

260

Applications may consist of server-side components and resources, such as server daemons,
databases, and so forth. In such cases, application installation should involve the installation of
these server-side components as well as the client-side components. Not all provisioning systems
will support this capability.

Application descriptor information should contain information about how and when server-side
components should beinstalled. For example, the application descriptor should indicate whether
server side components should be installed at first use of a client application or at the time of first
download of the client-side resources. Today, the reality is that server-side components have to be
installed, configured, and well tested prior to any attempts by clients to access them.

Installation verification involves informing the provisioning manager of a successful installation.
Installation natification isimportant because users are typically billed after they install an
application. TheMIDlet-Instal I-Notify attribute provides away for application developers
to specify the URL to which an HTTP POST command should be sent upon successful installation.
Developers can define this attribute's value. Sometimes, provisioning software will define the
value, because the provisioning manager best knows the URL it definesto track installations.

Successful installation implies successful download. Once installation is complete, users can
execute the application. Therefore, it's appropriate to charge the user for the software once
installation is confirmed. Of course, some applications might charge users after first use,
regardless of when the application was downloaded. It's important to note here that the device—
not, for the most part, the application—should do this kind of verification.

Upon natification, the provisioning system can generate a billing event. Note that installation
verification is different from purchase verification.

Billing Event Generation

Usersincur charges for the use of services. A bill isalist or total of charges that's presented to the
customer. A billing event is a natification that represents the occurrence of acharge.

A successful download can represent a chargeable event for software that requires purchase for a
fee. Upon the completion and verification of a successful download of an application by a user,
the provisioning system generates a billing event. The billing event is forwarded to a billing
system. The billing system is usually an independent system operated by the carrier to which the
provisioning system interfaces.

Provisioning systems support different modelsin support of billing. The various models generate
different types of hilling event information that represent different charging schemes. The
following list presents some possible charging schemes:

pay per download of application

pay per installation

pay per launch of application

pay for a certain amount of use

pay for a certain number of times of use

As adeveloper, you should consider what charging schemes you prefer—and which ones the
market will bear. Y our application descriptor information should reflect your preferences for
billing and charging in the information you supply during application registration.

Provisioning systems use a variety of schemesto forward billing event information to billing
systems. One scheme isto forward each event as it occurs. Another method is to collect groups of

261

billing events and forward them as a batch to be batch processed by the billing system. Batching
of events can done periodically in the same way that service providers normally do hilling.

Application Update

Application update is the process of updating an application that already resides on a device with a
newer version of the application. The Over the Air User Initiated Provisioning appendix of the
MIDP specification requires OTA provisioning systems to support the update of applications
already installed on devices. You'l find areference to this document in the References section at
the back of this book.

Device user agent software and provisioning manager software make use of the required
MIDIet-Version application JAD file attribute to negotiate application update. Additionally,
the application descriptor must uniquely identify the MIDlet suite to be downloaded so that the
device can determine whether it should perform an upgrade or a new installation. Developers
should ensure that they supply accurate MIDlet version information and MIDlet suite
identification information.

Application Removal

From the point of view of the provisioning manager, application removal is the process of
receiving notification that an application has been removed from a device. The device AMS takes
care of actually removing application suites from the device.

Developers need not consider server notification of application removal. This processinvolves
only the user agent and the server. Developers should, however, consider the needs of application
removal on the client when preparing an application's JAD file. TheMIDlet-Delete-Confirm
attribute is an optional JAD file attribute. Its purpose is to provide a text message for the AMS to
present to the user to confirm deletion of the associated MIDIet suite.

Provisioning managers that receive and maintain information about application removal can offer
more flexible provisioning scenarios. For instance, a user might wish to remove an application on
adevice to free up memory for another application. The user might wish to keep the license for
the first application, however. If the provisioning manager tracks this information, it can bypass
the license acquisition, payment, and verification steps the next time the user downloads the
original application.

Preparing Applications for Provisioning Systems

Designing applications for use with provisioning systems amounts to providing all the required
application files and ensuring that they contain the information needed throughout the
provisioning process. The primary task involved in this preparation is the proper creation of the
application descriptor (JAD) and application JAR files.

The JAD fileisthe primary mechanism for providing application-specific information to both
client and server. A JAD file may accompany each application JAR file. The provisioning system
extracts and uses information from this file during various stages of the provisioning process. The
JAD file can be kept as part of the application JAR file, or it can be maintained separately for easy
retrieval. One mgjor advantage of supplying aJAD file externally from the JAR file is that the
provisioning manager can obtain application attributes without opening the JAR file. Table 10.1
listsal the MIDIet attributes that are related to provisioning.

262

Table 10.1. MIDlet Attributes Related to Application Provisioning

MIDlet Attribute |Description Presence
Name
MIDlet- Defines a text message to be presented to the user to Optional
Delege— confirm deletion of a MIDlet suite. Used to prompt users
Confirm during application management by the AMS in order to
make room for MIDlet installation.
MIDIet- Defines a text description of the MIDlet suite. Used to Optional
Description |present a description to the user during discovery.
MIDlet- Defines the URL to which to report MIDlet installation status |Optional
Install- through an HTTP POST request.
Notify
MIDIet-Jar- |Indicates (in bytes) the size of the MIDlet JAR file. Used by |Required
Size the AMS to determine whether the device contains enough
total memory to accommodate the MIDlet suite.
MIDIet-Name |Defines the name of the MIDlet suite. Used to present the |Required
name of the MIDlet suite to users.
MIDIet-Vendor |Defines the name of the vendor of the MIDlet suite. Required
MIDlet- Used for application replacement. Required
Version

Both the client and server environments use the JAD file. The provisioning manager uses it during
provisioning, and the client usesit during application installation and execution. During
provisioning, the provisioning server sends the JAD file to the device, where the user agent
software uses it to verify that the MIDlet suite is compatible with the device before loading the
full MIDlet suite JAR file. During execution, as you know from chapter 3, the AMS uses
information in the JAD file to manage the life cycle of the application. Additionally, the AMS
makes the information in the JAD file available to the MIDletsin the MIDlet suite for use during
MIDlet execution.

TheMIDlet-Instal l-Notify attribute is an optional JAD and manifest file attribute that's
used for provisioning. Its purpose isto give user agent software a standard means of
communicating installation status to the service providing the MIDlet suite.

Thevaue of theMIDIet-Instal I-Noti fy attribute should describe the URL to which the
user agent sends an HTTP POST request that contains information about the installation status. It
is the responsibility of the user agent to send a complete POST request according to the
recommendations of the Over the Air User Initiated Provisioning appendix of the MIDP
specification. That is, the user agent will need to obtain some information about the application
from the AMS and include it—perhaps as HT TP parameters—in the POST request.

Some provisioning system software applications provide the URL except for the application-
specific parameters that only the AMS can provide. The rationale behind this policy is that the
provisioning software knows the URL it uses to accumulate installation notification information,
and it can alleviate the burden to the devel oper of having to research and provide the URL string
in each JAD file. Developers should be aware of whether the provisioning system writes this
attribute to the MIDlet suite JAD file. If it doesn't, the developer must include the attribute in the
JAD file.

It'sagood ideato ensure that your application descriptors define a value for theMIDlet-

Instal I-Notify attribute so that the user agent can report installation status even in cases
where the MIDlet suite cannot be retrieved. For instance, it's possible that the URL that defines the
location of the JAR file, the value of the MIDlet-Jar-URL attribute, isincorrect.

263

Chapter Summary

Application provisioning is the process of delivering application software to devices. Provisioning
isn't exclusive to wireless networks, J2ME, or even Java applications. Nevertheless, provisioning
systems have become an important component of J2ME application deployment support,
particularly in support of OTA provisioning for MIDP applications.

The provisioning process involves many steps that include the registration of applications with a
provisioning system and the discovery, selection, purchase, download, installation, and
verification of software. The purpose of provisioning systemsis to facilitate these steps and to
automate the process as much as possible to provide more sophisticated capabilities and error free
operation.

Because provisioning systems automate much of the provisioning process, they're well suited to
wireless networks. They alleviate many of the difficulties and automate many of the steps
involved in provisioning applications to devices with limited user interfaces over wireless
connections.

Provisioning systems are complex enterprise applications that are usually integrated into a
wireless carrier's network. They provide provisioning services to wireless subscribers. A key
consideration for application developersis the preparation of their MIDP applications for use with
the provisioning systems hosted by the carriers with which their applications will be registered.
Understanding the interfaces, features, and capabilities of the provisioning system with which
you'll interact isimportant. As an application developer, you must be able to provide all the
information needed by the provisioning system so that you can derive the greatest advantage from
it.

Provisioning systems support many other features that haven't been discussed in this chapter.
Many of these features are transparent to the application devel oper, in the sense that the developer
doesn't have to do anything to accommodate these aspects of provisioning system operation. Many
of them don't affect the application proper. Or, they simply address functions that are independent
of application development, configuration, or deployment issues.

264

Chapter 11. The Wireless Internet Environment

Background, Terminology, and Concepts
The Wireless Application Environment
Wireless Applications

Application Architecture

At this point, you know how to write M1DP applications and how to deploy them, with the help of
provisioning systems, in real wireless environments. Chapter 10 alluded to the wireless Internet
environment that hosts MIDP applications. In order to write effective commercia applications,
devel opers need to understand the wireless Internet environment—what it is, how it works, its
relationship to the wireless network, what support it has for applications, and the constraints it
imposes on application devel opment.

This chapter discusses the wireless Internet environment from the point of view of the application
developer. The main goal of this chapter is to give application developers an introduction to the
kinds of applications and services that wireless carriers are able to host today and how they do it.
This chapter hel ps devel opers understand the transport mechanisms and interfaces available in
wireless Internet environments, their constraints and limitations, and how these elements influence
application design and devel opment.

This chapter does not talk about the design of wireless networks and their infrastructures, or about
the design or operation of wireless Internet gateway systems. Although it's useful for application
developers to understand the abstractions of wireless network infrastructures—protocol stacks that
enable support for Internet protocols, markup transcoding systems, protocol converters, and flow
control systems—that enable support for wireless Internet applications, that topic is beyond the
scope of this chapter.

Background, Terminology, and Concepts

The terms wireless Web and wireless Internet refer to an environment in which wireless devices
can access the World Wide Web and the Internet. These terms are somewhat abstract in that they
don't convey information about the architecture or physical nature of the medium. The wireless
Internet, like the Internet, is an internetwork, an interconnection of networks. Unlike the Internet,
however, it's an internetwork of both wireless and fixed networks.

Wireless networks are connected to fixed networks—and to the Internet—through awireless
Internet gateway (WIG), agateway consisting of hardware and software that join a carrier's
wireless network to its own fixed intranet. Wireless Internet gateways usually consist of
proprietary hardware and software that enable communications with proprietary mobile switching
centers (MSC). Together, all these components implement specific types of wireless
communications systems. For example, many of the mobile handset manufacturers offer their own
WIGs. These work only with certain wireless communications systems and with certain base
stations and handsets.

Figure 11.1 shows alogical schematic diagram that represents the rel ationships between wireless
network components, WIGs, and carrier intranets. A WIG gives awireless network—and wireless
devices—access to the Internet by way of the wireless carrier's fixed intranet. A wireless carrier's
intranet interfaces to other fixed networks or internetworks, which givesit access to the Internet.

265

Figure 11.1. Wireless devices have access to Internet services through a WIG and
a carrier network. The wireless network, WIG and carrier fixed network collaborate
to create the infrastructure of abstractions that attempt to make the wireless
network look like a fixed network to mobile applications.

Wireless

Internet
gateway

Carrier
intranet

Wireless
network

From the perspective of the application developer, the most important el ement of the carrier's
network isthe wireless Internet portal. Conceptually, awireless portal is simply a Web portal to
which wireless devices have access by way of the wireless carrier's network infrastructure. And,
conceptually, there's no difference between wireless Internet portals and the familiar Internet
portals.

Wireless portals consist of a complex arrangement of hardware and software components that
include Web servers, application servers, database servers, directory servers, authentication
servers, and so forth. These components host a combination of commercial and proprietary
software components that together define an infrastructure of application services that support the
construction of portal applications. Wireless applications, in turn, are built on top of these services.

Wireless portals support many of the same applications as Internet portals. They provide
messaging services, which includes electronic mail, instant messaging (IM), and unified
messaging (UM), along with calendar, appointment book, and address book utilities, and so forth.
Application developers create portal applications that interface to these portal services through
application APIs defined by the portal services.

Although many of the applications found in the wireless and Internet portal worlds are similar, the
different technologies used in wireless and fixed networks dictate that applications be
implemented differently. These implementation differences often appear in every layer of the
platform infrastructure and are reflected by an application's architecture and design.

For instance, wireless systems all over the world use the Short Message Service (SMS) to
implement instant messaging for mobile devices. The implementation of the SM S transport
protocol and message format uses technology very different from the technology used to
implement instant messaging in Internet portal environments. The reason is that the characteristics,
congtraints, and limitations of the underlying wireless network infrastructure affect the design and
implementation of SM S services.

Similarly, the characteristics of the SM S service affect the design and implementation of 1M
applications implemented atop an SMS infrastructure. For example, SM S uses mobile terminal
(mobile phone) numbers to represent the address of a sender and receiver. Thisisa practical
design choice that reflects the information available to the SM S service.

One could implement an IM system that allows users to specify a user ID for message recipients.
Because wireless systems identify mobile terminals by their MSN, however, the messaging
application infrastructure would have to trandate a user ID to an MSN. Although feasible, this
approach poses engineering challenges, and, as always, there are tradeoffs in complexity, cost,
infrastructure, performance, and so forth.

J2ME and MIDP make Internet-like IM for mobile devices more feasible. Conceptually, aMIDP
application could implement an ICQ or IRC client, or aclient that's compatible with one of the
major commercia portal IM protocols. This approach might even be easier than implementing

266

traditional mobile IM (SMS), because SMS APIs are available only through proprietary platform
extensions.

Anather example of how the underlying technology affects application design is the limit on the
length of SM'S messages. The SMS protocol limits messages to 128 bytes. Applications can
abstract this limitation by dividing longer messages into multiple 128-byte messages. The
recipient's user agent reassembles the messages. At least one wireless carrier in Japan offers SMS
messaging in which messages can exceed 128 bytes. Several layers of abstraction are required to
implement this capability.

The use of the wireless application protocol (WAP) in wireless Internet environments is another
example. The definition of the WAP protocol, and all the lower protocol layers that support WAP,
reflect the constraints and challenges of transporting data in first-generation wireless networks.
The WAP protocol was designed to transport wireless markup language (WML) content. Systems
that implement this service have highly integrated platform layers. To support other combinations,
such as the transport of HTML over WAP would require the construction of additional platform
services or application infrastructure. The application design would have to consider the handset
platform capabilities, transport mechanisms, performance, and so forth.

The concept of avirtual portal exemplifiesthisnotion. A virtual wireless portal isa portal that's
not physically associated with awireless network. That is, it'sjust an Internet portal that supports
services compatible with wireless device technology and to which wireless devices have access
through the medium created by the carrier's connectivity to the Internet. Wireless devices with
wireless Internet connectivity can access any Internet portal, barring the presence of policy
restrictions imposed by the wireless carrier. Designers of portal applications that reside on Internet
portalswill most likely encounter limitations in terms of the devices and environments for which
they're applicable. For instance, a wireless user whose system supports only WML over WAP
won't be able to use an application that produces HTML presentation.

Developers of mobile applications must under stand the context of the
mobile environment. Constraints and limitationsimposed by its
technology and characteristics affect the types of applications and
designsthat arefeasible. The designer should consider how compatible
each design iswith the services, APIs, interfaces, and transport
mechanisms available on the wireless I nter net platform.

The Wireless Application Environment

At the application layer, externa interfaces, APIs, and transport mechanisms provide one kind of
description of a system. This is the perspective that interests application developers who must
know how to access and how to interface to system software services.

Other perspectives describe other parts of a system. For instance, systems have state models,
transaction processing models, and so forth that cannot be adequately described by a diagram such
as Figure 11.1. At some point in the application design process, application developers need to
understand these characteristics of the systems to which they interface.

Figure 11.2 isalogical schematic diagram that shows some typical system level components
found in wireless Internet systems. The diagram shows some of the most commonly used transport
mechanisms that interconnect components. The purpose of this diagram isto give developers
some perspective on the types of environments that support wireless applications.

267

Figure 11.2. The interfaces and transport mechanisms of the wireless Internet
environment influence the developer's technology choices and the feasibility of
certain application designs.

HTTRHTTRPE
inérmnal portal Useve, ol TGP
conmfgrration,
Carrler intranst
HTTRHTTPS
e proprtany
Registered portal users,
peosocnl simck E
WIG H
e TCPAP
HTTRHTTFS
R Ty - -
m " y ovar TCFIF
23, 250, and 3G H'lirelas: Intarnat - .
protocol stacka nabwor PHTT
avar TCRIP
Unregistered users

The environment shown in Figure 11.2 is that in which wireless applications are deployed and run.
These applications include not only handset applications—such as MIDP applications—but aso
server-side components that support the services used by applications on the handset.

Server-side wireless applications will reside inside the carrier intranet. This typically consists of
several hardware and software component systems, each of which provides one or more
application services. Some of these application services will behave like standard Web-based
applications and present an HTML interface, which requires a browser on the client side.

The 22ME platform, and MIDP in particular, create a platform that supports so-called intelligent
clients. These can be loosely defined as applications that perform a significantly greater amount of
processing on the client than do Web applications. A great many MIDP applications will be client-
server or distributed applications that communicate with server-side components. These MIDP
applications will communicate with the systems that reside in the wireless carrier intranet.

For example, client-server or distributed MIDP applications require networking and
communications capabilities in order to reach server-side components in the carrier intranet.
Although the MIDP platform hides the details of the abstractions and implementation of the
communi cations mechanisms you learned about in chapter 8, it's helpful to have a sense of how
Systems support various services.

Application developer s should be awar e of the interfaces, APIs,
transport mechanism, characteristics, and capabilities of the servicesin
the wireless I nternet environment. These services provide the medium
that supports client applications.

For each application, developerswill have to evaluate the environment,
tools, and capabilities availablein order to determine not only whether
an application concept isfeasible, but also which of many potential
designs makes the most sense given the constraints and limitations of the
technology.

268

Several of the conceptual design approaches discussed in this section
aren't realistic in the wireless Internet and J2M E platform
environments available at the time of thiswriting. Nevertheless, the
discussions herein reflect the impetusin thewireless Internet arena, so
application of these conceptswill be feasible with next-generation
systems.

Most of the Internet has standardized on HT TP as the primary transport mechanism at the session
layer. Application-layer protocols are tunneled using HTTP in order to address security issues.
Figure 11.2 reflects this architecture between the intranet, Internet, and user entities.

The wireless network, however, poses some unique challenges. Wireless networks use
complicated proprietary protocol stacks that represent solutions to the practical challenges of
implementing internetworking over wireless interfaces. These proprietary stacks have evolved as
wireless systems have advanced and are moving towards support of TCP/IP to the handset in
third-generation (3G) systems. Nevertheless, the layers underneath the network layer are still quite
different from the layers found in fixed internetworks.

More interesting to MIDP developersis the protocol stack above the transport layer; two major
stacks exist. Thefirst uses the wireless application protocol (WAP), which is heavily entrenched
in many contemporary wireless Web systems. For practical engineering reasons, WAP transports
content formatted in the wireless markup language (WML). The second approach, which islikely
to be adopted in 3G systems, transports XHTML/XML markup over HTTP. Additionally,
application layer protocols can be tunneled using HTTP.

Wireless Applications

This section briefly describes the types of applications and application services that are commonly
available in wireless Internet portals. We won't discuss the design of these services here because
they can involve complex architectures that require Web servers, application servers, and other
system-level components. Instead, the purpose of this section isto give an introductory conceptual
description of the wireless application environment and to help devel opers begin to think about
how to design applications for this environment.

Notice that Figure 11.2 doesn't present aview that is granular enough to show the systemsinside
the carrier intranet that provide individual software services. The reason is that the component
systems that wireless carriers use to provide messaging, personalization, personal information
management services, and so forth are often complex, proprietary third-party software systems.
The interfaces and APIs to these systems are proprietary, and a description of commercial
products is beyond the scope of this chapter and book.

Messaging
Conceptually, there are roughly three types of messaging in wireless environments:
e instant messaging

e electronic mail
e unified messaging

269

The precise definitions of these types of messaging are somewhat vague because they depend on
characteristics of particular implementations. For instance, how "instant” is instant messaging?
Nevertheless, there are generally accepted interpretations of these terms.

In wireless environments, instant messaging usually means SMS messaging, because SM S bearer
systems are typically used to implement the IM service. Message addresses consist of MSNs. SMS
bearers provide instant messaging to the extent that messages are sent "immediately.” Of course,
whether messages get there immediately depends on system congestion, flow control, bandwidth
congtraints, and so forth, which can result in delays that are greater than those experienced with
fixed network instant messaging technologies.

Electronic mail (e-mail) isthe transmission of arbitrary-length messages using a store-and-
forward model. The term e-mail implies the use of the familiar Internet e-mail addressing scheme,
an exampl e of which follows:

user@some-host.com

The exact capabilities of e-mail systemsin wireless networks depend on implementation. For
instance, not al implementations can support delivery of arbitrary-length messages. If e-mail is
delivered over a standard SM S bearer system, messages are limited to 128 bytes. In Japan, for
example, two of the major wireless carriers support e-mail to mobile devices with lengths of up to
several kilobytes. These systems use a proprietary bearer system that's completely independent of
SMS.

Unified messaging is the concept of a single mechanism that unifies other messaging systems and
gives users a single access point for all messaging services. A unified messaging system might
have a user interface for both Web-based access and wireless device access. Commercia vendors
offer unified messaging systems, which usually include an API for application interfaces. For
instance, a MIDP application could interface to the system through its external APl and present a
unified view of SMS and e-mail to the user. This scenario works only on phones that support it.
The notion is that a unified messaging system abstracts the details of interfacing to individual
messaging systems such as e-mail servers or SMS servers.

Personal Information Management Applications

Personal information management (PIM) applications include applications such as calendars with
event reminder capabilities, address book, note management, and so forth. These are al standard
utilities on Internet portal sites. The challenge in wireless environments is supporting the user
interface for these applications.

Mobile devices currently don't quite have the level of power and resources required to support a
desktop computer-like platform with a powerful Web browser. Nor do wireless networks have the
throughput to support the massive amounts of information produced by Web interfaces such as
those used in Internet portals.

The Internet mail application protocol (IMAP) and post office protocol (POP) are the two most
prevalent protocols supported by mail servers. Wireless networks will either support these
protocols to the handset or implement proprietary ones.

Calendar servicestypically define their own APIs and interfaces, which accommodate both Web-
based access and application-based access. Some systems define asingle HTML-over-HTTP
interface. A client-based calendar application that uses a server-based calendar server would have
to construct the HTTP requests according to the API defined by the server. Calendar notification
might use SM S to send reminders to clients. MIDP applications, for example, would have to have
some way of interfacing to the native messaging software on the handset. At the time of this
writing, the MIDP specification doesn't address interfaces to the native system software. It's

270

expected that the MIDP-NG (next generation) specification will address native device interfaces to
MIDP applications.

Personalization

Personalization is the support for the specification of attributes that define the context of an
authorized system user. The user context includes the specification of preferences for the
following categories:

e presentation preference infor mation— preferences for how information is presented to the
user

e user profile information— user contact information, financial or commercial information,
service plan information, user experience

e application configuration information— configuration information required to interface to
application services, for example, user name and password

Most systems use third-party personalization engines. Like most Web-based software, most
personalization services will support an HTML-over-HTTP API.

Location-Based Services

L ocation-based services are application services that use information about the geographic
location of the client and produce results relevant to that location information. Location-based
services aren't the exclusive domain of mobile devices and applications, athough there's a major
industry effort to support sophisticated |ocation-based services for mobile devices. Location
services can be provided to Internet based Web clients as well asto mobile clients.

The concept of location-based servicesis to provide to the client information that's relevant to the
client's location. For example, application services might want to display advertisements for
businesses that are in the proximity of the user. The process involves determining the correct
location context, processing location specific information, and presenting results to the user.

Location services can reference static location preference information or calculate location
information dynamically. For example, user profile and preference information might contain a
user's preference for location context. This information might indicate the user's preference for the
location context to be used by location-based services, regardless of the user's actual location.
Most mobile applications, however, will determine the mobile device's location dynamically.

Currently there are several different approaches being developed to provide geolocation
information to location based services:

e Global positioning system (GPS)— Mobile devices contain full GPS receivers.

¢ Network-based geolocation— Geolocation technology and processing reside solely in the
wireless network.

e Assisted GPS—Handset and network collaborate to provide complete location
information.

In GPS-based systems, the device application software obtains information about the device's
location from the GPS receiver on the mobile device. This scheme requires that MIDP
applications have some way of interfacing to the native software in order to gain accessto location
information and forward it to server-side application components.

The location information produced by network-based systems is less accurate than the information
produced by GPS systems. In network-based systems, the wireless network alone determines the
mobile device's position. The mobile switching center (MSC) must contain software that can

271

forward this information to application services. Because the MSC istypically transparent to
applications, the carrier must create the integration between the M SC and the application services.
That is, these systems must be designed in conjunction with each other.

Assisted GPS systemsinvolve partial GPS receivers on the mobile device, dedicated assisted GPS
serversin the carrier intranet, and integration with MSCs. Like network-based systems, the carrier
must provide this infrastructure and define the interface mechanism to application services.

The kinds of MIDP applications that MIDP devel opers can reasonably create will depend on the
types and geolocation services available. Moreover, devel opers need to evaluate the tradeoffs of
each of the foregoing three approaches to providing location-based information. Each hasits
strengths and weaknesses, and each will affect the kinds of features that can be supported
reaistically. Notwithstanding the differences between the various types of geolocation systems,
MIDP developers will have to use whatever scheme is supported.

Application Architecture

Application architecture is both an art and a science. As such, there are many definitions of
application architecture, all of which are defended vehemently by their proponents. A reasonable
definition is the one provided by The Software Engineering Institute of Carnegie-Mellon
University (http://www.sei.cmu.edu):

Application architecture is the structure or structures of the application, which comprise software
components, the externally visible properties of these components, and the rel ationships among
them. Application architecture represents the earliest design decisions and produces the earliest
design artifacts that address performance, modifiability, reliability, security, and user experience.

Booch, Rumbaugh, and Jacobsen give a classical definition of architecture in their book The UML
Modeling Language User Guide, which appears on the next page.

An architecture is the set of significant decisions about the organization of a software system, the
selection of the structural elements and their interfaces by which the system is composed, together
with their behavior as specified in the collaborations among those elements, the composition of
these structural and behavioral elements into progressively larger subsystems, and the architectural
style that guides this organi zation—these elements and their interfaces, their collaborations, and
their composition.

Architecture produces artifacts that describe a system. An important aspect of architectureisthat it
involves the application of processes that result in the creation of these artifacts. An architectural
methodology (AM) isa collection of practices that guide the application of a set of processes. The
software engineering community has defined many methodol ogies, each of which reflectsits own
philosophy, processes, and artifacts. One such architectural methodology is the SunTone AM,
which was developed at Sun Microsystems and is an extension of the Rational Unified Process
(RUP).

This section most certainly doesn't give adequate treatment to the full scope of what architectureis,
how to do architecture, to architectura process, or to any architectural methodology such as the
SunTone AM. Describing the practice of architecture, its artifacts, processes, and related
methodologiesis far beyond the scope or purpose of this book.

Rather, the purpose of this section is to introduce you to the concepts that surround application
architecture and to proselytize the importance of performing architecture asthefirst stepin
creating commercial-quality applications. Now that you have competency in the set of pragmatics

272

http://www.sei.cmu.edu/

needed to develop J2ME applications, you need to take a broader perspective of the issues
involved in building robust, commercial-quality applications that can withstand the requirements
of areal-world wireless environment. Attention to architecture will most certainly increase the
J2ME application designer's ability to design robust applications that meet the requirements of the
wireless environment.

MIDP applications use the services that comprise the wireless Internet portal. Even though MIDP
developers might not be involved in the design and construction of the portal services, it's
important that they project an architectural perspective on the wireless Internet platformin order
to quantify the capabilities, characteristics, and qualities of those services. The MIDP devel oper
needs to view MIDP applications as one part of the system that consists of the mobile device and
all other wireless Internet components.

MIDP developers might even be involved in the design of the server side components. Awareness
and understanding of architecture will enable devel opers to build better services, which in turn
make more successful MIDP applications possible.

Architectureisacomplex topic, and it's the subject of many dedicated
books. The purpose of this section on ar chitectureisonly to introduce
the concept of architectureto you if you aren't familiar with it. For those
of you who are already familiar with architecture, thegoalsareto
stimulate you to project an architect's per spective onto the wireless

I nternet environment and to encourage you to think about the
architectural challengesto creating robust, commercial MIDP
applicationsfor thewirelessInternet. | encourage you to appreciatethe
importance of doing ar chitecture and to form the habit of performing
architecture asthefirst step in the design of any application.

Architectural Frameworks

An architectural framework is a basic conceptual structure that supports the definition of an
architectural model. Actua architectural methodol ogies define their own frameworks, which
support the definition of the elements of the methodol ogy, namely those that describe the
architectural processes, the definition of views of a system, and the artifacts that represent the
concrete definition of a system design.

The SunTone AM offers aframework whose main principles include:

e use case focused— emphasi zes starting with requirements gathering

e iterative—evolving the system by iterating through a development cycle that includes all
phases of development

e driven by systemic qualities— addressing systemic qualitiesin all phases of development

e architecture-centric— adhering to sound architectural principles

e pattern based— applying patterns, which are proven solutions to well-known problems, to
solve design challenges

What follows is a brief introduction to these principles with the aim of motivating you to perform
architecture as the first step in the development process. By quantifying the description of a
system through architecture, architects and designers can produce higher-quality systems that have
greater fidelity to the originally stated system requirements. Architecture helps designers build
more robust, reliable, functional systems, which have more value to developers and users alike.

A complete description or discussion of even one of these principles is beyond the scope of this
book. A brief discussion nonetheless serves to introduce you to the concepts surrounding these

273

architectural principles and gives you, the 2ME application designer, ideas about how to begin to
take advantage of the art and science of architecture. For an excellent introduction to architecture
and the SunTone AM, see the reference to Dot-Com & Beyond in the References section at the
back of this book.

Thefirst element of the SunTone AM framework, the use case, is a description of a system
requirement. Use cases capture and document system requirements in human-readable form. |
cannot overstate the importance of ensuring that a design addresses the requirements of a system.
The requirements-gathering process is an activity complementary to architecture. There are
several good books that explain use cases in depth, such as Alistair Cockburn's Writing Effective
Use Cases, which is referenced in the References section at the back of this book.

It'susually not possible to capture all system requirements adequately in the first attempt. For this
reason, the SunTone AM stresses the importance of doing iterative requirements gathering. Asthe
concept of a system evolves with the experience of designers, marketing personnel, and others,
requirements evolve or become more clearly elucidated, and their descriptions can be made more
precise.

The principle of iterative development applies to every step of the devel opment process, not just to
requirements gathering. Iterative development refers to the concept of performing multiple
iterations of the whole development cycle. The reason for including all stepsin the iterative
development processis simply that it's difficult to implement anything correctly the first time. The
development cycle includes al of the following steps:

1. Requirements gathering— identifying new requirements and refining existing
requirements

Architecture— describing the design of the system

Design—for example, object-oriented analysis and design

I mplementing— building a working system with some incremental set of functionalities
Testing— testing the functionality built in thisiteration

Debugging— finding, isolating, and fixing bugs

ouhrwd

The SunTone AM organi zes these steps in repeatabl e iterations, each time refining their
implementation until all requirements are satisfied. For example, in an effort to design an IMAP-
based mail client for the MIDP platform, a devel oper might realize that a particular architecture
isn't easy to implement because of limitations in the available libraries. The developer realizes this
after going through aninitial cycle of the above development steps. After finishing aninitial
prototype, it's clear that some of the logic is difficult to implement.

A second iteration begins with a new requirements-gathering effort. The developer (or architect)
reexamines the requirements to refine everyone's understanding of them, or to determine whether
some features are really needed, or whether the scenarios that define the usage model for certain
features can be redefined. What follows next is a second effort at architecture, design, prototyping,
and so forth through all the steps of the process.

The crux of the development process is the determination, at the end of each cycle, of whether the
system adequately meets the stated requirements. If not, another iteration is necessary. The power
of iterative development is the ability it gives devel opers to produce systems that meet
requirements in the most efficient way possible.

The key to this efficiency is the notion of prototyping small pieces of the system's overall
functionality in each iteration. This philosophy contrasts with the traditional "waterfall" approach
to software development. For example, in the development of our MIDP mail client, the first
iteration should address the creation of the basic features whose presenceis required for al other
features, such as user login and fetching of mail headers and messages. If testing reveals that this
basic infrastructure doesn't work, developers learn of it early in the process and can correct it

274

before venturing further and building additional features on a broken foundation. Furthermore, this
approach avoids complex integration of a mass of features at the end of asingle development
cycle, at which timeit's exponentially more difficult to isolate and fix the cause of a problem.

Systemic Qualities

The determination of whether a prototype adheres to a stated set of requirementsis central to any
architectural methodology or development effort. Identifying a comprehensive set of requirements,
therefore, is an important part of any development effort. The following list contains two
categories of requirements:

e Functional requirements describe the application functionality and itslogical operation.
e Nonfunctional requirements describe the systemic characteristics or qualities of the
system

The second category in thislist represents requirements that quantify a system's level of
performance, scalability, security, maintainability, availability, and so forth. This section focuses
on describing the elements that comprise this second category of nonfunctional requirements.

One of the cornerstones of the SunTone AM that distinguishesit from other methodologiesisits
emphasis on systemic qualities. An important criterion in judging a good architecture from a
guestionable one is the determination of how well it supports the systemic qualities dictated by the
requirements. Of course, to produce a comprehensive architecture, the architect must still look at
the system from all perspectives.

The SunTone AM defines three dimensions—tiers, layers, and systemic
gualities—each of which represents a unique per spective of a system.
These dimensions support the decomposition of a system into orthogonal
viewsthat reflect the system's adherenceto different categories of
requirements.

This chapter doesn't discussthe concepts of tiersand layers; such a
discussion would drift too far into a treatment of what isarchitecture
and how to doit and ismore appropriatein teaching how to ar chitect
multitiered systems. Much of thischapter dealswith the notion of

under standing ar chitectural principlesin order to project concepts onto
real systems and under stand their characteristics.

This chapter focuses on the concepts surrounding systemic qualities
becauseit'sthe onethat's most often overlooked, and becauseit
addresses systemic qualitiesthat are critical to the achievement of
performance, security, and massive scalein wireless I nternet
environments.

In the context of system architecture, systemic qualities include the following categories:

user-level qualities— usability, accessibility

service-level qualities— performance, reliability, availability
strategic-level qualities— scalability, flexibility

system-level qualities— security, manageability, maintainability

Designing with consideration of systemic qualitiesis vitally important to the success of any
system. Your MIDP mail client might behave perfectly from the logical and functional
perspectives, but if it yields unacceptable performance, it becomes unusable.

275

A central principle of the SunTone AM istheimportance of addressing
systemic qualities from the outset of your architecture and design
efforts. It'sunrealistic to expect to be ableto alter or reengineer your
applications at the end of their development cycleto address systemic
qualities. Industry statistics support the notion that most efforts that
address systemic qualities as an afterthought will fail.

User-L evel Qualities. User-level qualitiesinclude usability and accessibility. Usability is the
measure of how intuitive and natural it isto use an application. User interfaces should be designed
so that they accommodate the user. The engineering that supports the Ul should take secondary
priority. Thisissue will most likely arise in MIDP applications, because the MIDP Ul poses a
challenge to devel opers creating commercial user interfaces. Devel opers might have to make
compromises on features after experimenting with how easy it is to support intuitive, usable
interfaces.

Accessibility is the measure of how accessible—how easy—it isfor al peopleto use an
application, including those who have visual impairment or disabilities. The MIDP environment
doesn't address accessibility for people with disabilities like the AWT or Swing environments do.

In the context of the limited input and display capabilities of MIDP devices, accessibility aso
implies the characteristics of application design that ensure intuitive and facile user interfaces. At
the absolute least, developers can at least consider aspects that might make displays more readable,
such asfont, font size, and so forth.

Service-Level Qualities. Service-level qualities include performance, reliability and availability.
Performance is the measure of characteristics such as responsiveness, latency, and throughput. For
MIDP developers, performance on the client is important. But latency and throughput of network
communicationsis aso an important issue for distributed and client-server applications. For
example, it would be difficult indeed to write a multiplayer action game on MIDP today because
of network latency.

Reliability is the measure of the probability that a system will continue to perform at a stipulated

level. Application reliability is closely related to the reliability of the platform components upon

which an application is built. For instance, the reliability of a MIDP client application dependsin
part on the reliability of aconnection to aserver.

Availability is a measure of whether a service (provided by an application) can be reached.
Availability isrelated to reliability. The distinction between reliability and availability is that
reliability refersto individual components, whereas availability describes the degree to which a
service is reachable. For example, one of several components that provide redundancy can fail, yet
the service can remain available.

Although availability isn't really an issue for standalone MIDP applications, it does affect
distributed MIDP applications that use server-side components. Y ou can't really build a highly
available MIDP application if it uses network services that aren't highly available. Thisis a good
example of why the MIDP developer must project an architectural view on all aspects of the
wireless Internet environment, even if he or she doesn't architect or design the network services
that MIDP applications use.

Strategic-L evel Qualities. Strategic-level qualities include scalability and flexibility. Scalability
is the measure of the degree to which the application can accommodate an increase in
simultaneous users while maintaining the same level of performance. Scalability of server-side
components affects MIDP clients. Developers of MIDP applications that request datafrom a
server-side component need to consider what access model best mitigates the negative forces of
high volumes of users. For example, it might be possible for aMIDP client to request more data

276

per request and make fewer requests. Performance degradation might not be evident for small
volumes of users, but when the application is deployed to large wireless environments,
performance degradation could be drastic.

Flexibility is the measure of how easily an application can accommodate or incorporate new or
modified services. For example, the designer of our MIDP mail client might want to anticipate the
need to connect to both POP3 or IMAP mail servers. This consideration might warrant the
implementation of a design pattern that hides the details of the connection mechanism from most
of the application, making it easy to add support for new application-level mail protocols.

Ancther example is the flexibility with which a client can parse new application-level protocols or
data formats received from services. Providers of wireless Internet services might redesign their
services periodically. The flexibility of your MIDP application can save you much time and effort
so that you can avoid redesigning your application to accommodate changes in network services
and server-side components. Looking at the wireless Internet service with an architect's eye will
enable you to anticipate these kinds of problems.

System-L evel Qualities. System-level qualities include security, manageability, and
maintainability. Security is the measure of how well an application denies intrusion and prevents
damage by unauthorized users.

Application security is also an important issue for al applications. MIDP applications may be
password protected, for example. Application-level security also includes protecting against
unauthorized access to application data. A password saver application on a mobile device, for
example, would have to ensure that the passwords weren't accessible to the average person or to
someone who steals your phone. The device AMS may also support a security mechanism that
protects the complete mobile device from unauthorized use of all applications.

MIDP applications, however, must also consider the need for security in a distributed environment.
Thisincludes interfacing with secure services, of course. But it also includes issues such as which
Internet sites users can access or which devices Internet users can access.

Understanding the security constraints of the wireless environment imposed by the carrier could
affect the choice of featuresin your MIDP application. Moreover, it can also affect how you
choose to deploy your application. For instance, many carriers might allow provisioning of MIDP
applications from partner sites only, to avoid the problem of their users downloading malicious
applications from unofficial locations, which have no liahility for damage to users' devices or to
the network.

Manageability is the measure of how easy it is to manage and monitor the system and detect
operational characteristics that could indicate service failures. The designer of a service needsto
consider how to architect a system to support manageability. The MIDP application developer,
however, needs to understand and consider how an application fits the service's manageability
model. For example, how does a mail client time out in the event that the mail server is not one
hundred percent available?

Maintainability is the measure of how easy it isto maintain a system. This quality permeates al
aspects of the design of a system or even of aMIDP application. Y ou must consider not only the
maintainability of the MIDP application itself but also the effects of maintenance of server side
components on the MIDP client.

Systemic qualities affect MIDP applicationsin a variety of ways. First,
MI1DP applications—those that reside on mobile devices—need to
consider how well they address systemic qualities.

277

Second, MIDP clients might work in conjunction with a server-side
servicethat resides somewhere on the wireless Internet. The same
developer might design both client and server components. Developers
should apply comprehensive ar chitectural principlesto the design of
these server-side components. The wireless Internet platform
environment isacritical environment for architecture because of its
requirements for massive scalability, performance, security, and so
forth.

Finally, MIDP clients must be awar e of the systemic qualities of any
servicethey use. Even if the attributes of these services are beyond the
control of the MIDP developer, it'simportant to understand their
limitations and how they affect the functional and systemic qualities of
the MIDP application.

Architectural Considerations for the Wireless Internet

A comprehensive architectural effort must consider every aspect of the system. From the
perspective of the 2ME designer, the system context is not just the 2ME platform but also the
whole wireless Internet environment, including the Internet portal and wireless network
environments.

In particular, MIDP devel opers should be aware of how systemic qualities of the Internet portal
environment and the wireless network environment affect MIDP application design. Whileit's
clear how the presence of APIs, application-level protocols, markup languages, data formats and
so forth affect the functional design of a system, it's less apparent how the systemic qualities of
these environments affect the design of MIDP applications. Even though the architecture and
design of Internet portals and portal servicesis beyond the realm of the MIDP devel oper—and
part of the domain of the Internet architect—the characteristics of those systems affect the designs
of MIDP applications and should be understood by the MIDP developer.

The crux of the purpose of this section is to precipitate your awareness of the architectural view of
the wireless Internet environment: how it differs from fixed internetwork environments and how it
affects the design of J2ME applications. Keep in mind, however, that the topics | discuss here by
no means comprise a comprehensive list of architectural issues.

The issues highlighted here focus on the effect that the characteristics of wireless Internet
environments have on an architecture's systemic qualities. Although it's dangerous to prioritize the
importance of systemic qualities without specific requirements, it's probably safe to say that, in
general, performance, scalability, availability and security are at the forefront of the architect's
thoughts as much as, if not more than, the other systemic qualities. These systemic qualitiesin
particular highlight some of the differences between wireless Internet and fixed Internet
environments.

For example, distributed MIDP applications make requests to send and receive data over a
wireless connection. Although the many layers of the wireless network protocol stack and the
MIDP generic connection framework abstract the architectural details of the wireless network

from your application, the network's performance characteristics influence your application design.

The two main categories of wireless networks are circuit-switched and packet-switched networks.
Circuit-switched networks incur longer connection establishment times than packet-based
networks. Longer connection establishment times induce delays in establishing data
communications, which affects latency and throughput. Theoretically, MIDP applications should
probably be designed to request more data per connection and to limit the number of connections

278

made to remote servers, particularly in circuit-switched networks. Actual performance
measurements available at the time of thiswriting, however, indicate that the relatively new
packet-based networks are not yet tuned well enough to reduce latency and increase throughput as
much as originally anticipated. For this reason, it's generally agood ideato limit the overall
number of connection requests.

Greater performance may also be achieved through the use of datagrams for certain networking
communications. If the application requirements can accommodate it, the use of UDP instead of
HTTP or sockets (if the MIDP implementation even supports sockets, that is) might result in much
better network performance, because UDP implementations don't create connections at the
transport layer.

Another issueis the cost of a data connection in wireless networks. Circuit-switched networks
charge by connection time. Packet networks charge by the number of bytes transmitted and
received. The type of network on which your MIDP application runs, and the design you choose
for your application's communications, could affect the cost to the end user. Additionally, the type
of network might affect network scalability, congestion, and throughput.

In circuit-switched networks, you might want to close connections whenever possible to avoid
monopolizing bandwidth when not in use. Of course, you must reconcile the tradeoffs between the
costs incurred by keeping connections open with the overhead and the latency induced by
frequently opening and closing connections.

Dataretrieval is another issue that affects performance. Y ou can't do anything about the
performance of adatalayer deep in the portal architecture. However, you can mitigate the effects
of frequent requests for data. Obtaining more data with each request and caching it locally on the
device, either in memory or in the RMS, might yield better performance. And, as I've already
discussed, this strategy might also yield better performance in the wireless network.

Performance is also an issue on the MIDP platform itself. MIDP applications should consider their
model for local data access. Thisis an example of the benefit of prototyping an application before
embarking on afull implementation. Y ou may find that you get better performance by caching
RMS records in memory than by accessing the RM S for each read or write. Some MIDP
implementations have proven to perform better by deleting the whole record store, recreating it,
and then writing all the records at once instead of writing individual records.

Scalahility is closely related to performance. Y ou should consider whether a design that supports
high performance also supports massive scalability. MIDP applications should be prototyped and
tested for massive scale, because wireless Internet applications could well experience large
numbers of simultaneous users. Depending on your application and the Internet environment to
which your applications have access, it might be possible to access decentralized Internet services,
thereby mitigating the effects of abottleneck caused by accessing a single server.

The support for location-based services is another areathat can affect the design of handset
applications. Asyou learned earlier, wireless Internet environments may host one of three types of
geolocation technol ogies upon which location based services are built. GPS-based systems aren't
quite available in real networks yet. At the time of this writing, network-based services are the
most prevalent. Assisted GPS systems are still experimental but show promise. Y our application
design will be influenced to alarge degree by the system support available. Regardless of the
technology, however, you might be able to choose design aternatives that yield better
performance and scalability. The point is to be aware of the need to view the overall system—not
just the device-resident software—according to the criteria defined by systemic qualities.

Security is aso an important systemic quality. Wireless networks, like corporate networks, face
serious challenges to maintaining secure environments. Like most corporate networks, they use

279

schemes such as dynamic address configuration, network address trangdlation, firewalls, and so
forth to hide the details of network addresses and services from outside entities.

Anather reason for the implementation of these schemes is the limitation of network address space.
Wireless networks frequently translate | P addresses to proprietary address schemesin order to
accommodate the large volume of handsets. In order to support peer-to-peer data communications
between handsets, the wireless network would have to provide a scheme to forward handset
addresses based on some form of internal addressing. A centralized service model could impact
performance and scalability.

These are some of the reasons why wireless networks have a data-networking environment that's
more constrained than fixed internetwork environments. MIDP devel opers should consider the
limitations of the network when designing applications. With the adoption of 1Pv6, there will be
enough addresses to give each handset a static 1P address. Notwithstanding, security, performance,
and scalability will remain important issues.

Chapter Summary

The wireless Internet environment consists of mobile devices, the wireless network, gateways, and
internetworks that connect the wireless network to the Internet. The power of the wireless Internet
isthat it enables mobile devices to access Web based and other Internet-based applications. The
wireless network environment creates the abstractions that hide the differences between the
wireless network and the Internet from applications.

Wireless devices have access to many of the same categories of applications as constantly
connected, fixed devices such as personal computers. Additionally, certain applications, such as
dynamic location-based services, are particularly popular in the mobile arena.

The Java-based technology of the 2ME platform significantly enhances the ability of mobile
devicesto benefit from Internet-based applications. It aids in hiding the differences in technology
and services between the wireless network and the Internet from applications.

Real-world constraints and technological limitations, however, require that Internet-based Web
software specifically accommodate the wireless Internet, that is, address the technologies used for
wireless device access. As technology progresses, however, the wireless Internet will support
abstractions that eliminate the need for special Web-based software that supports mobile devices
differently from constantly connected devices such as personal computers.

Architecture is a set of concepts and practices that support the design and description of a system.
Architectural methodology is the discipline of applying architectural concepts and practices. The
SunTone Architectural Methodology is an extension of the Rational Unified Process.

Architectural methodology complements requirements gathering. The architect must reconcile an
architecture with the stated requirements of a system. The SunTone Architectural Methodology
emphasizes the importance of quantifying the nonfunctional or systemic qualities of a system and
using them to determine the system's adherence to its stated requirements.

The J2ME developer should consider performing an architectural analysis asthefirst stepin
application design and devel opment. Architecture can help a devel oper describe the software he or
sheis building and also understand how best to interface with wireless Internet services by
understanding the architecture of the wireless Internet systems.

280

Appendix A. References

Arnold, Ken and James Gosling. The Java Programming Language, 2nd ed.. Reading, MA:
Addison Wesley Longman, 1998.

Booch, Grady, James Rumbaugh and Ivar Jacobson. The Unified Modeling Language User Guide.
Reading, MA: Addison Wesley Longman, 1999.

Cockburn, Alistair. Writing Effective Use Cases. Reading, MA: Addison Wesley Longman, 2000.

Djuknic, Goran M. and Robert E. Richton. "Geolocation and Assisted GPS." |IEEE Computer,
February 2001, pp. 123-125.

Gamma, Eric, Richard Helm, Ralph Johnson and John Vlissides. Design Patterns, Elements of
Reusable Object-Oriented Software. Reading, MA: Addison-Wesley, 1995.

Internet Engineering Task Force. HTTP Authentication: Basic and Digest Access Authentication.
RFC 2617: Network working group, The Internet Society, June 1999.

Hypertext Transfer Protocol—HTTP/1.1. RFC 2616: Network working group, The
Internet Society, June 1999.

Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message
Bodies. RFC 2045: Network working group, The Internet Society, November 1996.

Uniform Resource Identifiers (URI): Generic Syntax. RFC 2396: Network working group,
The Internet Society, August 1998.

International Organization for Standardization. 1 SO-3166 Codes (Countries). Geneva, Switzerland:
http://www.unicode.org/unicode/onlinedat/countries.html.

10-639 Code for the Representation of Names of Languages. Geneva, Switzerland:
http://www.unicode.org/uni code/onlinedat/languages.html.

Jacobsen, I., Grady Booch and James Rumbaugh. The Unified Software Development Process.
Reading, MA: Addison-Wesley-L.ongman, 1999.

Krutchen, P. The Rational Unified Process, An Introduction, 2nd ed. Reading, MA: Addison-
Wesley Longman, 2000.

Lindholm, Tim and Frank Y ellin. The Java Virtual Machine Specification. Reading, MA:
Addison-Wesley Longman, 1997.

Padlipsky M. A. The Elements of Networking Style. Englewood Cliffs, New Jersey: Prentice-Hall,
1985.

Piroumian, Vartan. Java GUI Development. Indianapolis, IN: Macmillan, 1999.

"Internationalization Support in Java." IEEE Micro, May/June 1997, pp. 20-29.

Sun Professional Services. Dot-Com & Beyond. Upper Seddle River, NJ: Sun Microsystems
Press/Prentice-Hall, 2001.

281

http://www.unicode.org/unicode/onlinedat/countries.html
http://www.unicode.org/unicode/onlinedat/languages.html

Applications for Mobile Information Devices: Helpful Hints for Application Developers
using the Mobile Information Device Profile, A White Paper. Palo Alto, CA: Sun Microsystems,
2000.

Connected Device Configuration (CDC) and the Foundation Profile, Technical White
Paper. Palo Alto, CA: Sun Microsystems, 2001.

Connected Limited Device Configuration, Specification Version 1.0, Java 2 Platform
Micro Edition. Palo Alto, CA: Sun Microsystems, 1999-2000.

Java 2 Micro Edition, Wireless Toolkit User's Guide, Release 1.0. Palo Alto, CA: Sun
Microsystems, November 2000.

Java 2 Platform Micro Edition (J2ME) Technology for Creating Mobile Devices, A White
Paper. Sun Microsystems. Palo Alto, CA, 2000.

Java Archive Utility Reference Manual.
http://java.sun.com/products/jdk/1.2/docs/quide/jar/index.html.

Mobile Information Device Profile (JSR-37), JCP Specification, Java 2 Platform, Micro
Edition, Version 1.0a. Palo Alto, CA: Sun Microsystems, 1999-2000.

Over the Air User Initiated Provisioning Recommended Practice, Addendum to the
Mobile Information Device Profile, Version 1.0. Palo Alto, CA: Sun Microsystems, April 12, 2001

Sunshine, Carl A., ed. Computer Network Architectures and Protocols. 2nd ed. New Y ork:
Plenum Press, 1989.

Tanenbaum, Andrew S. Computer Networks, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 1989.

Varshney, Upkar. ""Recent Advances in Wireless Networking." |EEE Computer, June 2000, pp.
100-103.

Glossary
2G

The second generation of wireless network technology. 2G networks use circuit-switching
technology.

2.5G

The generation of wireless network technology that follows 2G. 2.5G networks don't
replace 2G networks but rather provide packet data services to compliment 2G networks.

3G

282

http://java.sun.com/products/jdk/1.2/docs/guide/jar/index.html

Thethird generation of wireless network technology. 3G networks; completely packet-
switched.

Abstract Window Toolkit (AWT)

Defines graphical user interface (GUI) programming facilities for Java programs.

application architecture

A description of the interfaces, collaborations, and composition of the structural elements
of a software system.

application management system

Pervasive device software that controls the execution of applications on the mobile device.

application provisioning

In the context of J2ME, the discovery, brokering. and delivery of applications to
pervasive devices.

architectural framework

A conceptual structure that supports the definition of an architectural model.

attribute

A piece of information that defines a characteristic of a MIDlet. Attributes consist of a
name-value pair. The name identifies the attribute key, and the value contains the
information.

brokering

The category of application provisioning that consists of presentation of application
information, license negotiation, and purchase verification.

character encoding set

283

A mapping between written language characters and bit patterns, which are sometimes
abbreviated as charset.

code point

The assignment of an element of awritten natural language to a particular bit pattern.

collation

Lexicographic sorting in the context of rules that represent a particular locale context.

command

A representation of a user action. The MIDP defines a class whose object instances
represent user interactions with the application.

compatibility verification

The process of determining the compatibility of a software application with a pervasive
device computing environment.

Common Object Request Broker Architecture (CORBA)

Anindustry standard for cross-platform, cross-language distributed computing. The
Object Management Group (OMG) oversees its continuing definition and evolution.

compact virtual machine (CVM)

A Javavirtual machine that supports the same features as the J2SE virtual machine but is
designed for consumer and embedded devices.

configuration

A specification of aminimum Java platform that consists of a common set of Java virtual
machine features, Java language features, and APIsfor afamily of devices.

Connected Device Configuration (CDC)

A J2ME configuration that supports constantly connected pervasive devices.

284

Connected, Limited Device Configuration (CLDC)

A J2ME configuration that supports personal, intermittently connected pervasive devices.

datagram

An application protocol unit of data that is transmitted through the use of the UDP
protocol in the Internet environment.

design pattern

In the context of computer software, a design solution to awell-known or frequently
encountered problem.

discovery

The process of searching for applications during application provisioning.

discovery application

An application that resides on a mobile device and supports the provisioning of
applications to the device. This application is different from the AMS, which enablesthe
installation of software once it's on the device.

double buffering

A graphics programming technique in which two graphics buffers are used to draw
graphics. The program first writes to an off-screen graphics object, then transfers the
contents of the off-screen graphics object to the screen graphics object.

event listener

A Java class defined by MIDP applications whose instances listen for program events.
The MIDP implementation calls a method in the listener object to notify it of the
occurrence of an event.

eXtensible Hypertext Markup Language (XHTML)

285

A presentation markup language that will eventually replace HTML and reformats HTML
4.0 as aproper XML application.

eXtensible Markup Language (XML)

The standard metai nformation markup language used on the World Wide Web.

foundation profile

A profile designed to implement the CDC.

generic connection framework

A set of MIDP interfaces and one class that support networking for MIDP applications. It
abstracts the details of establishing any particular kind of networking connection.

global positioning system (GPS)

A system of geostationary satellites that transmit geographic location information to
receivers.

high-level API

The MIDP user-interface application API that abstracts details of toolkit event handling
from the application.

Hypertext markup language (HTML)

The standard presentation markup language used on the World Wide Web.

Hyptertext transfer protocol (HTTP)

A session-layer protocol that isthe standard protocol of the World Wide Web.

instant messaging (IM)

The delivery of messages as soon as possible. This scheme contrasts the store-and-
forward scheme used by electronic mail systems.

286

inter nationalization

The tasks associated with enabling a computer program to operate in multiple language,
geographic, and cultural contexts.

I nternet mail application protocol (IMAP)

A standard application-layer protocol for access to mail between mail clients and servers.

I nternet protocol (1P)

The Internet standard network-layer protocol.

International Standards Organization (1SO)

A European body that oversees the creation and adoption of international standards.

1 SO8859-1

Aninternational standard character-encoding set for encoding Western European
languages using one byte per character.

Java 2 Micro Edition (J2ME)

One of three platforms defined by Sun Microsystems; supports pervasive computing
devices.

Java application manager

An AMS that specifically supports the control of Java applications on pervasive devices.

Java Native Interface (JNI)

A Java API that supports callsto native functions outside the Java virtual machine.

Java Server Page (JSP)

287

A kind of Java servlet. The Java Server Pages technology defines an API that separates
the user interface presentation of a servlet from the servlet's functional logic.

Kilobyte Virtual Machine (KVM)

A Javavirtual machine designed for use with the CLDC. It supports a subset of the
standard Java virtual machine features.

Lightweight Directory Access Protocol (LDAP)

Anindustry standard for associating users with attributes in a conceptual directory format.

listener

See [event listener]
locale

The definition of a set of one or more language, geographic, and cultural contexts.

localization

Thetask of preparing the resources that enable an internationalized program to operate in
a particular language, geographic, and cultural context.

location-based services

The use of geolocation information by applications to provide information relevant to the
client's geographic location.

low-level API

The MIDP application user interface API that gives applications control over low-level
toolkit events such as key events.

MIDlet

A MIDP application, namely, one that requires the MIDP platform to run.

MIDlet suite

288

A group of MIDlets that share application resources. All MIDletsin a suite must be
packaged together for delivery to aMIDP device.

Maobile Indepdendent Device Profile (MIDP)

A J2ME profile that implements the CLDC.

mobile station identification and service definition number (M SISDN)

Like an MSN, the phone number of a mobile phone.

mobile station number (M SN)

The phone number of a mobile phone.

multilingual

In the context of internationalized software, a program that can operate in multiple locale
contexts simultaneoudly.

network addresstrangation (NAT)

A scheme by which |P addresses are trandated to a different |P address in order to hide
the original address from external systems. NAT supports security and address space
issues.

over-the-air

A term that refers to the use of awireless network. Thisterm is specifically used to
represent application provisioning to mobile devices using a wireless connection.

per sonalization

Services that support customization of the user's preferences for services, configuration of
applications and presentation, account information, and so forth.

personal profile

A J2ME profile designed to implement the CDC.

289

Post Office Protocol (POP)

A standard application protocol between mail clients and servers.

profile

A specification of the application-level interface for a particular class of devices. A
profile implements a 2ME configuration.

Personal Digital Assistant Profile (PDAP)

A J2ME profile designed to implement the CLDC.

property

An attribute that describes some characteristic of the Java runtime environment on mobile
devices.

rational unified process (RUP)

A software development methodology developed by Rational Software.

record comparator

A Javaclass defined by MIDP applications to implement a comparison function to
compare two records from a MIDP RMS record store.

record filter

A Java class defined by MIDP applications to implement afilter for records from an
MIDP RMS record store according to some criterion. The filter returns only records that
match the criterion.

Record Management System (RMYS)

A simple persistent storage mechanism for application data. It supports multiple data
stores, each of which can contain multiple records.

290

Remote M ethod Invocation (RM1)

A Java API that supports distributed object-oriented computing in Java.

short message service (SMS)

A wireless network service that supports the transmission of text messages of no more
than 128 bytes to and from mobile devices.

socket

A traditional Unix operating system networking mechanism that implements TCP/IP
network connections between clients.

Swing toolkit

A GUI extension built atop the AWT.

systemic qualities

The characteristics of a system that relate to its nonfunctional behavior, such as
performance, scalability, security, availability, manageability, and so forth.

Transmission Control Protocol (TCP)

The Internet standard transport layer protocol.

Universal Datagram Protocol (UDP)

A standard Internet networking protocol that supports the transmission of datagrams
without establishing atransport layer connection.

Unicode

Aninternational standard character-encoding set that attempts to use a canonical 16-bit
encoding format to encode every language element of all the world's written languages.

unified messaging

291

The integration of various messaging services that hides the details of access of any of the
schemes.

use case

A conceptual tool that supports the description and documentation of application
requirements.

UTF-8

Aninternational standard, variable-width, character-encoding set that is frequently used
for encoding text data for transmission between applications.

virtual wireless portal

A portal that provides services to wireless users but is not physically related to the
wireless carrier's network, (that is, not part of the carrier'sintranet).

widget

A computer-vernacular slang term that refers to some kind of software component, often
(but not exclusively) a user-interface component of some kind.

Wireless Application Protocol (WAP)

The protocol used in first-generation wireless Internet systems.

wireless I nternet

The combination of the wireless network infrastructure and its interface to the Internet
that creates the environment giving mobile devices access to Internet resources.

wireless I nternet gateway (WIG)

A combined hardware and software system that bridges the wireless and fixed network
environments.

wireless I nternet portal

292

An Internet portal that addresses the delivery of services and content to mobile devices
but is otherwise conceptually not different from fixed Internet portals.

Wireless Markup Language (WML)

A presentation markup language used in first-generation wireless Internet systems to
format Web pages for mobile devices.

wirelessWeb

The combination of the wireless network infrastructure and the Internet that gives mobile
devices to the World Wide Web.

XML application

Animplementation of XML that represents an instance of an XML extension markup
language.

293

	Table of Content
	Copyright
	RESTRICTED RIGHTS LEGEND
	TRADEMARKS
	Credits
	Dedication

	Foreword
	Preface
	Acknowledgments
	Introduction
	Book Content and Organization
	Audience
	Conventions Used In This Book
	
	Table I.1. Typographical Conventions
	Table I.2. Source Code Conventions Used Throughout This Book

	Where to Download J2ME
	Where to Find the Code Examples From This Book

	Chapter 1. Introduction to the Java 2 Micro Edition

(J2ME) Platform
	Defining a Java Platform for Pervasive Devices
	
	Figure 1.1. The J2ME platform consists of a set of layers that support a basic runtime environment with core Java libraries and a Virtual Machine (VM), a set of system-level application programming interfaces (APIs) in a configuration, and a set of a

	Configurations and Profiles
	The Connected Device Configuration (CDC)
	Table 1.1. CDC Packages
	Table 1.2. Foundation Profile Packages
	Table 1.3. Personal Profile Packages

	Connected, Limited Device Configuration (CLDC)
	Figure 1.2. The CLDC is a proper subset of the CDC. Neither the CLDC nor the CDC is a proper subset of the J2SE platform, however, because both of these configurations add new classes necessary to deliver services on their respective families of devices.
	Table 1.4. CLDC Packages
	Table 1.5. MIDP Packages
	Figure 1.3. The CDC targets fixed-connection, shared, stationary devices. The CLDC targets personal, mobile, limited-connection devices.

	Device Application Management Systems
	Chapter Summary

	Chapter 2. The MIDP Application Development

Process
	Designing and Coding
	
	Table 2.1. Subdirectories of Projects Created by the J2ME Wireless Toolkit

	Compilation
	Preverification
	Packaging
	Creating the JAR Manifest File
	Table 2.2. Required MANIFEST.MF File Attributes

	Creating the MIDlet Suite JAR File
	Table 2.3. Optional MANIFEST.MF File Attributes

	Creating the MIDlet Suite Application Descriptor File
	Table 2.4. Required Application Descriptor File Attributes
	Table 2.5. Optional Application Descriptor File Attributes

	Deployment and Execution
	Using the J2ME Wireless Toolkit
	Creating a Project
	Figure 2.1. The KToolbar is the main window from which you access all of the Wireless Toolkit's functions.
	Figure 2.2. To create a new project, you must define at least one MIDlet. You must supply the project name and the name of the main Java class for the first MIDlet.
	Figure 2.3. The Wireless Toolkit creates a manifest and JAD file for you based on the information you supply in this screen, which represents the required application descriptor fields.
	Figure 2.4. This panel lets you edit the optional meta-information attributes of your MIDlet's application descriptor file.
	Figure 2.5. After you complete the entry of the required MIDlet suite information, the KToolbar indicates where to place application specific files. Notice that resource files go in the application's res/ directory, not the bin/ directory.
	Figure 2.6. Application developers can define attributes that are specific to one or more MIDlets in the MIDlet suite.

	Placing Source Code in the Project
	Compiling the Project
	Figure 2.7. Compiling your project produces additional diagnostic output in the KToolbar main window.

	Packaging the Project
	Figure 2.8. Select the Package menu option to package your application. This step produces the application JAD and JAR files.
	Figure 2.9. The packaging step actually compiles the application before packaging it. The diagnostics output reflects the execution of the compilation and packaging steps.

	Deploying the Application
	Executing the Application
	Figure 2.10. The Wireless Toolkit can emulate five devices. Two of these are real devices.
	Figure 2.11. The AMS main screen enables you to select the MIDlet you wish to execute. If more than one MIDlet is present in the MIDlet suite, you'll see a list of all of them. Notice the Launch button provided by the AMS system.
	Figure 2.12. This is the single screen displayed by the HelloWorld application. Notice that there is no button to exit the application. You can click the red Hang Up button to return to the AMS main screen.
	Figure 2.13. The emulator writes diagnostics output to the console.

	Chapter Summary

	Chapter 3. MIDP Application Program Structure
	The Application Execution Lifecycle
	
	Figure 3.1. This MIDlet run uses the default color phone supplied with the toolkit. Notice the MIDlet title.
	Figure 3.2. Add new MIDlets to a suite using the MIDlets tab of the Settings window.
	Figure 3.3. When more than one MIDlet is available, the AMS displays a menu showing you all of them. The AMS, not your application, creates the Launch button. You must click it to invoke the selected MIDlet.
	Figure 3.4. This application's main screen contains a title and a single line of text.

	MIDlet Program Structure
	
	Listing 3.1 This is the MIDP version of the familiar HelloWorld program.

	The MIDlet State Model
	
	Figure 3.5. A MIDlet can be in one of three states. When the AMS first creates a MIDlet, the MIDlet exists in the paused state.
	Table 3.1. MIDlet States
	Table 3.2. MIDlet Class Methods That Control MIDlet State

	The MIDP UI Component Model
	
	Figure 3.6. MIDP implementations create only one Display object per MIDlet. Your MIDlet is an instance of your main class that extends the MIDlet class. It can create many Displayable objects, however.
	Figure 3.7. The inheritance diagram of the MIDP UI components shows the relationships between a MIDlet, its associated Display object, and its Displayable objects. Unless otherwise qualified, all classes belong to the javax.microedition.lcdui package.
	Table 3.3. Form Class Methods for Adding Items to a Form Object

	System Properties
	
	Table 3.4. Standard CLDC System Properties
	Listing 3.2 MIDlets have direct access to all four of the standard system properties defined by the CLDC specification.

	Application Properties
	
	Listing 3.3 The modified method now also prints the application properties. The device AMS software manages application properties.
	Listing 3.4 MIDlet attributes, or properties, are different from system properties. You can define an unlimited number of optional MIDlet attributes in addition to the predefined, required ones.

	Chapter Summary

	Chapter 4. The MIDP High-Level API
	Command Processing
	
	Table 4.1. Command Types

	Command-Processing Scenario
	
	Figure 4.1. This UML diagram shows the relationship between several of the key classes that are responsible for the creation, detection, and delivery of command events to your application.
	Figure 4.2. This object diagram indicates that many displayable objects can exist in a running application, and more than one can register the same listener. A Displayable can have only one command listener, however.
	Listing 4.1 The HelloWorld2 program adds command processing.
	Figure 4.3. Adding a new MIDlet to a suite results in the AMS displaying a menu from which you choose the application you want to run.
	Figure 4.4. The main screen of the HelloWorld2 MIDlet.
	Figure 4.5. A screen capture of the HelloWorld2 MIDlet first screen with a soft button added as it is displayed by the Motorola i85s emulator.
	Figure 4.6. Pressing the "Alert Me!" soft button displays this alert. Alerts are a type of displayable screen.
	Listing 4.2 The command listener now distinguishes between commands by examining their labels.

	Screen Navigation
	Command Organization
	
	Figure 4.7. The implementation adds the "Menu" soft button when it detects more than two commands added to the current Displayable.
	Figure 4.8. Selecting the "Menu" button displays a list of the items on the screen's menu.
	Figure 4.9. The placement of labels—commands—is i

	Command Ordering
	Figure 4.10. The MIDP implementation determines the policy for placing commands according to their type.

	Command Semantics

	Chapter Summary

	Chapter 5. The MIDP UI Components
	MIDP UI Component Hierarchy
	
	Figure 5.1. MIDP UI components belong to either the class of Displayable objects or to the class of Item objects, with the exception of the Ticker class, which derives from Object.
	Table 5.1. Description of All MIDP UI Components

	Screens and Screen Elements
	
	Listing 5.1 The UIComponentDemo source code
	Figure 5.2. View of the UIComponentDemo main screen. The items are the names of the main classes for each demo.
	Figure 5.3. The main screen of the alert demo is a form that aggregates a ChoiceGroup and a TextField.
	Listing 5.2 Alerts are screens, but they cannot contain Command objects. You must specify the Displayable that is to be shown when the alert is dismissed.
	Listing 5.3 The command listener must check for the activation of the special List.SELECT_COMMAND if the application uses implicit lists.
	Table 5.2. AlertType Class Constants That Represent Possible Types of Alert Objects
	Table 5.3. Constraint Types Defined by the TextField Class

	Screen Navigation
	
	Listing 5.4 The command listener must find a reference to the instance of whatever application screen it wants to return to.

	More Item Components
	DateField
	Listing 5.5 Because screens are displayable, the getInstance() method should return a screen object of some kind. This one returns an instance of the Form.
	Figure 5.4. A DateField object consists of two parts: a label and a value that displays the quantity as text.
	Table 5.4. DateField Constants for Controlling the Date/Time Information Displayed
	Figure 5.5. The DateField object implements the interface by which you edit its date and time values.
	Figure 5.6. The implementation presents this UI to allow you to edit the time value.

	StringItem
	Figure 5.7. String items contain two parts: a text label and a text value.
	Listing 5.6 String items are forms.

	Gauge
	Figure 5.8. There are interactive and noninteractive gauges. You can modify the value of an interactive gauge.
	Listing 5.7 The four parameters required to specify a gauge are its mode, human readable title, initial value, and maximum value.

	Ticker
	Figure 5.9. The ticker is placed on the display, not on the screen. The implementation defines an area for the ticker independent from any screen, allowing it to be shared by multiple screens.
	Listing 5.8 Ticker demo source code

	ImageItem
	Figure 5.10. Several MIDP UI components support the display of an image. Here, a form contains an ImageItem component, which displays an image.
	Listing 5.9 The constructor creates an image object and passes it to the UI component for display. Notice that the path specification for the image is relative to the resource directory of this project under the J2ME Wireless Toolkit installation.
	Table 5.5. MIDP UI Components That Use Images

	One More Screen Type
	Figure 5.11. The TextBoxDemo screen
	Listing 5.10 Text boxes are screens and don't need a form in which to exist.
	Figure 5.12. The precise interface presented for editing a text box is implementation-dependent.

	Chapter Summary

	Chapter 6. The MIDP Low-Level API
	
	Figure 6.1. Canvas objects are displayable, but because they aren't screens, they don't share any of the elements of the screen abstraction present in the MIDP high-level UI components.

	Command and Event Handling
	
	Table 6.1. Low-level API Event Notification Methods
	Listing 6.1 The CanvasDemo1 demo requires a MIDlet like any other MIDP application.
	Listing 6.2 To use a Canvas, you must create a subclass of Canvas.
	Figure 6.2. Canvases can still do command processing. They can be the source of command events, which the implementation delivers to a registered command listener.

	Key Events
	Table 6.2. Canvas Class Constants Representing ITU-T Keys
	Table 6.3. Canvas Class Constants Representing Game Actions Mapped to Mobile Device Keys

	Game Actions

	Graphics Drawing
	The Graphics Model
	The Graphics Class
	Figure 6.3. The Graphics class abstracts the display as a two-dimensional grid of pixels.

	Basic Geometric Drawing
	Figure 6.4. You can draw lines on a Canvas. You can simulate lines of thickness greater than one pixel by drawing adjacent lines in the same pen color.
	Listing 6.3 The demo defines a paint() method, which ensures that some visual representation appears on the device's display.
	Figure 6.5. Rectangles, like all geometric drawing, can be drawn in different colors by specifying the color of the graphics pen. The middle rectangle is red, although it appears as a shade of gray in the figure.
	Listing 6.4 The RectangleDemo demo demonstrates the graphics calls for drawing rectangles. Notice that there is a call to fill rectangles.
	Figure 6.6. Like other geometric figures, arcs can be drawn in outline mode or fill mode.
	Listing 6.5 Arcs can be drawn in outline or in filled form, like rectangles.
	Figure 6.7. Text is "drawn" within the bounds of an imaginary bounding rectangle, which is calculated by the text-drawing routines.
	Table 6.4. Canvas Class Methods That Support Drawing Text on a Canvas
	Table 6.5. Graphics Constants for Specifying an Anchor-Weighting Policy
	Figure 6.8. To draw text, specify the location of its anchor point. Draw vertical text by positioning and drawing each character of the text.
	Listing 6.6 To draw text, specify the anchor point and the weighting of the anchor point. You can also specify the font of the text to be drawn.
	Table 6.6. Graphics Constants That Define Font Attributes

	Clipping
	Listing 6.7 You must erase all invalid pixels before painting your component. Use the clip rectangle of your component's graphics object to determine the rectangular area that contains all of the damaged pixels.

	Translation
	Figure 6.9. When your Canvas is first created, the origin of its Graphics object, (0, 0), always refers to the top-left pixel in the device's display (the destination).
	Figure 6.10. The display after translation. Translation means translating the origin of the Graphics object, not the destination display.
	Listing 6.8 After translation, the coordinates specified to the Graphics drawing routines don't change, because they are always relative to the origin of the Graphics context, not the display.

	How Components Are Painted
	Double Buffering
	Listing 6.9 Double buffering uses two graphics contexts. The only way to obtain a second graphics context in MIDP is through the Image class.
	Figure 6.11. The left side represents the state upon first entering the paint method. The right side represents the state after the off-screen Graphics context is obtained. A reference saves the original Graphics context. The color coding indicates that

	Image Display Using a Canvas
	Figure 6.12. A Canvas can display an image by "drawing" the image, which actually draws the image into the image object's Graphics context.
	Listing 6.10 To display an image, a Canvas simply "draws" the image object using the image-drawing routine of its Graphics object.
	Table 6-7. Image Class Methods for Creating Image Objects

	Chapter Summary

	Chapter 7. Persistent Storage Support in MIDP
	Device Support for Persistent Storage
	RMS Data Storage Model
	
	Figure 7.1. The RMS consists of one or more record stores, each containing zero or more records that are arrays of bytes.

	Records
	An Example Application
	
	Listing 7.1 The AddressBook class abstracts the application's access to the record store.
	Figure 7.2. The RMS package defines several exceptions related to accessing a data store. All exceptions belong to the javax.microedition.rms package unless otherwise indicated.

	Manipulating byte[] Data
	Enumerations
	Listing 7.2 Enumerations enable you to access records without knowing their record IDs.

	Record Filters
	Listing 7.3 The desired search for names that begin with the substring entered by the user uses the API in the AddressBook class that defines these search semantics.

	Record Comparators
	Table 7.1. RecordComparator Constants
	Listing 7.4 This record comparator defines semantics for ordering records based on the lexicographic ordering of the value of their name fields.
	Listing 7.5 To realize sorting, simply pass an instance of a comparator to the call to enumerate records from the record store. Different enumerators can define different sorting policies.

	Record Listeners
	Table 7.2. RecordStore Event Listener Support Methods
	Table 7.3. RecordListener Interface Methods

	Miscellaneous Record Store Features
	Table 7.4. Methods in the RecordStore Class

	Chapter Summary

	Chapter 8. MIDP Networking and Communications
	The MIDP Networking Model
	The MIDP Generic Connection Framework
	Connectors and Connections
	Figure 8.1. The connection factory produces connections to network resources by parsing the URI scheme field and enlisting the help of specific network classes to build the right type of transport mechanism.

	Generic Connection Framework Classes and Interfaces
	
	Figure 8.2. The connection types each support a specific level of abstraction, which is reflected by the methods in each interface. Capability increases, and abstraction decreases, as you move further down the hierarchy. All interfaces are in the javax.m
	Table 8.1. InputConnection Interface Methods
	Table 8.2. OutputConnection Interface Methods

	Stream Connections
	Content Connections
	Table 8.3. ContentConnection Interface Methods
	Table 8.4. HttpConnection Interface Methods
	Table 8.5. HttpConnection Interface Constant Definitions
	Listing 8.1 The ConnectionDemo program defines the MIDlet that displays HTTP protocol metainformation, namely the value of HTTP header fields. The program uses a HEAD command to obtain only the metainformation instead of the whole page.
	Listing 8.2 The URIEntry class defines a form that prompts the user for input of a URI.
	Listing 8.3 The ResourceDisplay class defines a form that displays the resource. It uses a helper object to get the resource.
	Listing 8.4 The HttpResource class defines the entity that actually fetches the network resource.
	Figure 8.3. HttpConnection objects transition to three different states during their existence.
	Table 8.6. HttpConnection Interface Methods to Construct the HTTP Request
	Table 8.7. HttpConnection Interface Methods that Transition a Connection to the Connected State
	Table 8.8. HttpConnection Interface Methods Called in the Connected State

	Datagram Connections and Datagrams
	Table 8.9. DatagramConnection Interface Methods
	Figure 8.4. A datagram characterizes generic data. The methods in this hierarchy of interfaces support only the lowest abstraction that enables the manipulation of built-in data types. There's no abstraction of protocol-specific fields.
	Table 8.10. Datagram Interface Methods
	Table 8.11. DataInput Interface Methods
	Table 8.12. DataOutput Interface Methods
	Listing 8.5 Datagrams are sent and received by a datagram connection. This program parses the payload of a received datagram and displays it on screen.

	Socket Connections
	Figure 8.5. Socket-based services must be able to do asynchronous processing. The daemon spawns a thread to control communication with each client.
	Table 8.13. StreamConnectionNotifier Interface Methods
	Listing 8.6 A server spawns a new thread to produce a server-side entity that communicates with each client. The client and server must define the semantics of their messages.
	Listing 8.7 A server agent is an object that communicates with a client independently from the server daemon. It runs in its own thread, allowing other instances to simultaneously communicate with their clients.
	Listing 8.8 A client has a dedicated connection to a server agent. The state model for the communications, as well as the syntax and semantics of the communications, are defined by the server but must be obeyed by clients.

	Differences between J2ME and J2SE Networking
	Chapter Summary

	Chapter 9. Internationalization
	Concepts
	Locales and Localization
	Character Encoding Sets
	Aspects of Internationalization

	Internationalization Support in MIDP
	I18N Frameworks
	Messaging
	String Collation
	Date, Time, and Numeric Formatting
	Calendar and Time Zone Support

	Designing an I18N Solution for a MIDP Application
	Using MIDlet Attributes to Define L10N Resources
	Listing 9.1 The JAD file contains one attribute per application string per locale supported.
	Listing 9.2 The modified HelloWorld class is called I18NDemo. It uses a lookup scheme to retrieve the correct version of application string attributes based on locale.
	Listing 9.3 The HelloForm class defines the form object and uses the same scheme as the main MIDlet class.

	Using Application Text Files to Define L10N Resources
	Listing 9.4 The name of this file is fr_FR.txt. It consists of French-language versions of application strings.
	Listing 9.5 The I18NDemo2 class uses streams to read text resource files. The getResource() implementation now reflects the new design for retrieving resources from files in the application JAR.
	Listing 9.6 The HelloForm2 class now uses the I18NDemo2.getResource() API to retrieve l10n resources.
	Table 9.1. java.io.Reader Constructors and Methods

	Using Java Class Files to Define I18N Resources
	Listing 9.7 The ResourceBundle class defines a framework for aggregating resources without implying details about the abstraction required to do the aggregation.
	Listing 9.8 The ListResourceBundle class uses a "list" (in reality, a two-dimensional object array) to aggregate resources.
	Listing 9.9 A concrete subclass of ListResourceBundle easily defines localized resources. Each subclass defines the "list" of resource values (actually an array) and defines the getContents() method.
	Listing 9.10 Each locale's resources are defined in its own corresponding subclass of ListResourceBundle. This one defines attributes localized for French.
	Listing 9.11 The I18NDemo3 class instantiates the correct resource bundle class for its runtime locale context. Resources of any Java type are easily accessed from the bundle.
	Figure 9.1. All of the text seen by the user is localized. The program retrieves localized English language resources using the same mechanism as it does for every other locale.
	Figure 9.2. The application logic retrieves French-language resources from the object that defines the French-language application resources.
	Figure 9.3. Java Unicode escape sequences easily support all written languages. Using a simple text editor, you can create localized resources for languages that aren't represented on your computer keyboard.
	Listing 9.12 The Russian localized resource class file also contains Unicode escape sequences that enable you to represent Cyrillic characters without the use of any special text editors or tools.
	Figure 9.4. Japanese-localized resources are treated the same way as those of other languages. Of course, your system must have the appropriate fonts to display these characters.
	Listing 9.13 Unicode escape sequences accommodate all elements of all the world's written languages, including East Asian languages such as Japanese.
	Figure 9.5. This screen displays text localized for simplified Chinese. Although Japanese Kanji writing uses Chinese ideographs, different fonts represent the two languages. You must ensure that you have fonts for both locales.
	Listing 9.14 This file defines localized resources for the zh_CN locale, China, for the I18NDemo3 application.

	Application Provisioning of L10N Resources

	Chapter Summary

	Chapter 10. Application Provisioning
	Concepts
	
	Figure 10.1. An application-provisioning system interfaces to the carrier's wireless Internet gateway in order to be able to communicate with the mobile devices it serves.

	The Provisioning Process
	Application Registration
	Application Search
	Compatibility Verification
	Purchase Verification and Non-Repudiation
	User Authentication
	Application Software License Negotiation
	Application Download
	Application Installation and Installation Verification
	Billing Event Generation
	Application Update
	Application Removal

	Preparing Applications for Provisioning Systems
	
	Table 10.1. MIDlet Attributes Related to Application Provisioning

	Chapter Summary

	Chapter 11. The Wireless Internet Environment
	Background, Terminology, and Concepts
	
	Figure 11.1. Wireless devices have access to Internet services through a WIG and a carrier network. The wireless network, WIG and carrier fixed network collaborate to create the infrastructure of abstractions that attempt to make the wireless network loo

	The Wireless Application Environment
	
	Figure 11.2. The interfaces and transport mechanisms of the wireless Internet environment influence the developer's technology choices and the feasibility of certain application designs.

	Wireless Applications
	Messaging
	Personal Information Management Applications
	Personalization
	Location-Based Services

	Application Architecture
	Architectural Frameworks
	Systemic Qualities
	Architectural Considerations for the Wireless Internet

	Chapter Summary

	Appendix A. References
	Glossary

